We study the effect of viscoelasticity on the transportation of neutral solutes through a porous microchannel. The underlying transport phenomenon, modelled using the simplified Phan-Thien-Tanner constitutive equation, is actuated by the combined influence of pressure gradient and electroosmosis. Here, we obtain the closed form solution for the velocity distribution inside the flow domain and calculate the concentration profiles of the neutral solutes within the mass transport boundary layer by invoking the similarity solution approach. To establish the efficacy of viscoelastic solvents in the transportation of neutral solutes, which may find relevance in transdermal drug delivery applications, here we show the variations in the local solute concentration, the length averaged solute concentration at the wall, and the Sherwood number with the viscoelastic parameter. The present study infers that the shear-thinning nature of the viscoelastic fluid enhances the convective mass transfer as well as the permeation rate in the porous membranes. A complex interplay between the fluid rheology and the porous structure of the walls influenced by the electrochemistry at the interfacial scale modulates the mass transfer boundary layer of neutral solutes, implicating an effective method of mass transport in transdermal drug delivery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.