The COVID-19 pandemic presents global challenges transcending boundaries of country, race, religion, and economy. The current gold standard method for COVID-19 detection is the reverse transcription polymerase chain reaction (RT-PCR) testing. However, this method is expensive, time-consuming, and violates social distancing. Also, as the pandemic is expected to stay for a while, there is a need for an alternate diagnosis tool which overcomes these limitations, and is deployable at a large scale. The prominent symptoms of COVID-19 include cough and breathing difficulties. We foresee that respiratory sounds, when analyzed using machine learning techniques, can provide useful insights, enabling the design of a diagnostic tool. Towards this, the paper presents an early effort in creating (and analyzing) a database, called Coswara, of respiratory sounds, namely, cough, breath, and voice. The sound samples are collected via worldwide crowdsourcing using a website application. The curated dataset is released as open access. As the pandemic is evolving, the data collection and analysis is a work in progress. We believe that insights from analysis of Coswara can be effective in enabling sound based technology solutions for point-of-care diagnosis of respiratory infection, and in the near future this can help to diagnose COVID-19.
The DiCOVA challenge aims at accelerating research in diagnosing COVID-19 using acoustics (DiCOVA), a topic at the intersection of speech and audio processing, respiratory health diagnosis, and machine learning. This challenge is an open call for researchers to analyze a dataset of sound recordings collected from COVID-19 infected and non-COVID-19 individuals for a two-class classification. These recordings were collected via crowdsourcing from multiple countries, through a website application. The challenge features two tracks, one focusing on cough sounds, and the other on using a collection of breath, sustained vowel phonation, and number counting speech recordings. In this paper, we introduce the challenge and provide a detailed description of the task, and present a baseline system for the task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.