<span lang="EN-US">Reliable energy is ensured by the power quality, safety and security. For reliability and economic growth of transmission utilities, it is necessary to maintain continuity of supply, which is challenging under deregulated system. It is essential for utilities to conduct regular maintenance of transmission lines before supply interrupts. To protect line from fault, it is necessary to detect fault on line, its classification and location at the earliest. Various smart techniques along with application of artificial intelligence (AI) in power system are under investigation. This paper tries to find solution by identifying practical common faults occurred on transmission lines, and also suggests the suitable maintenance methodology. It uses the artificial neural network (ANN) method and live line maintenance technique (LLMT) for pre identification of a fault and subsequent predictive maintenance. Paper compares results of combination of ANN with LLMT and cold line maintenance technique (CLMT). Comparison of statistical analysis shows combine model of ANN and LLMT results in minimize outage time, failure rate which can improve system availability and increases revenue.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.