In the present work, microwave-assisted coprecipitation route was used for synthesis of nanocrystalline zinc ferrite and results were compared with conventionally prepared zinc ferrite. Synthesis conditions were kept uniform in both cases, except that the mode of heating was changed. The effects of mode of heating on the material properties were studied systematically. Microstructures of both samples were studied by scanning electron microscopy and transmission electron microscopy and the particle size was found to be in the range of 3-4 nm. Particle size distribution in microwaveprocessed MS-ZnFe 2 O 4 is found to be highly uniform compared to conventionally processed samples (CS-ZnFe 2 O 4 ). XRD data confirmed the presence of single-phase face-centered cubic structure for both the samples. The XRD data fitted well with Reitveld refinement. The functional groups were analyzed by FT-IR. Local distortions in the structures were studied by FT-Raman spectra of zinc ferrites at room temperature. This study concludes that the microwaveassisted synthesis route reduced the time of reaction by around 23 h and developed uniformly distributed fine-scaled particles. This method has high potential to synthesize other ferrite materials also.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.