Metamaterials are nano-engineered media with designed properties beyond those available in nature with applications in all aspects of materials science. In particular, metamaterials have shown promise for next generation optical materials with electromagnetic responses that cannot be obtained from conventional media. We review the fundamental properties of metamaterials with hyperbolic dispersion and present the various applications where such media offer potential for transformative impact. These artificial materials support unique bulk electromagnetic states which can tailor light-matter interaction at the nanoscale. We present a unified view of practical approaches to achieve hyperbolic dispersion using thin film and nanowire structures. We also review current research in the field of hyperbolic metamaterials such as sub-wavelength imaging and broadband photonic density of states engineering. The review introduces the concepts central to the theory of hyperbolic media as well as nanofabrication and characterization details essential to experimentalists. Finally, we outline the challenges in the area and offer a set of directions for future work.
The ultrafast laser excitation of matters leads to nonequilibrium states with complex solid-liquid phase-transition dynamics. We used electron diffraction at mega-electron volt energies to visualize the ultrafast melting of gold on the atomic scale length. For energy densities approaching the irreversible melting regime, we first observed heterogeneous melting on time scales of 100 to 1000 picoseconds, transitioning to homogeneous melting that occurs catastrophically within 10 to 20 picoseconds at higher energy densities. We showed evidence for the heterogeneous coexistence of solid and liquid. We determined the ion and electron temperature evolution and found superheated conditions. Our results constrain the electron-ion coupling rate, determine the Debye temperature, and reveal the melting sensitivity to nucleation seeds.
Ultra-compact, densely integrated optical components manufactured on a CMOS-foundry platform are highly desirable for optical information processing and electronic-photonic co-integration. However, the large spatial extent of evanescent waves arising from nanoscale confinement, ubiquitous in silicon photonic devices, causes significant cross-talk and scattering loss. Here, we demonstrate that anisotropic all-dielectric metamaterials open a new degree of freedom in total internal reflection to shorten the decay length of evanescent waves. We experimentally show the reduction of cross-talk by greater than 30 times and the bending loss by greater than 3 times in densely integrated, ultra-compact photonic circuit blocks. Our prototype all-dielectric metamaterial-waveguide achieves a low propagation loss of approximately 3.7±1.0 dB/cm, comparable to those of silicon strip waveguides. Our approach marks a departure from interference-based confinement as in photonic crystals or slot waveguides, which utilize nanoscale field enhancement. Its ability to suppress evanescent waves without substantially increasing the propagation loss shall pave the way for all-dielectric metamaterial-based dense integration.
Nanoscale light-matter interaction in the weak coupling regime has been achieved with unique hyperbolic metamaterial modes possessing a high density of states. Here, we show strong coupling between intersubband transitions (ISBTs) of a multiple quantum well (MQW) slab and the bulk polariton modes of a hyperbolic metamaterial (HMM). These HMM modes have large wavevectors (high-k modes) and are normally evanescent in conventional materials. We analyze a metal-dielectric practical multilayer HMM structure consisting of a highly doped semiconductor acting as a metallic layer and an active multiple quantum well dielectric slab. We observe delocalized metamaterial mode interaction with the active materials distributed throughout the structure. Strong coupling and characteristic anticrossing with a maximum Rabi splitting (RS) energy of up to 52 meV is predicted between the high-k mode of the HMM and the ISBT, a value approximately 10.5 times greater than the ISBT linewidth and 4.5 times greater than the material loss of the structure. The scalability and tunability of the RS energy in an active semiconductor metamaterial device have potential applications in quantum well infrared photodetectors and intersubband light-emitting devices.
Strong nanoscale light-matter interaction is often accompanied by ultra-confined photonic modes and large momentum polaritons existing far beyond the light cone. A direct probe of such phenomena is difficult due to the momentum mismatch of these modes with free space light however, fast electron probes can reveal the fundamental quantum and spatially dispersive behavior of these excitations.Here, we use momentum-resolved electron energy loss spectroscopy (q-EELS) in a transmission electron microscope to explore the optical response of plasmonic thin films including momentum transfer up to wavevectors (q) significantly exceeding the light line wave vector. We show close agreement between experimental q-EELS maps, theoretical simulations of fast electrons passing through thin films and the momentum-resolved photonic density of states (q-PDOS) dispersion. Although a direct link between q-EELS and the q-PDOS exists for an infinite medium, here we show fundamental differences between q-EELS measurements and the q-PDOS that must be taken into consideration for realistic finite structures with no translational invariance along the direction of electron motion. Our work paves the way for using q-EELS as the preeminent tool for mapping the q-PDOS of exotic phenomena with large momenta (high-q) such as hyperbolic polaritons and spatially-dispersive plasmons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.