In this paper, we introduce a modified Krasnoselski鈥揗ann type iterative method for capturing a common solution of a split mixed equilibrium problem and a hierarchical fixed point problem of a finite collection of k-strictly pseudocontractive nonself-mappings. Many of the algorithms for solving the split mixed equilibrium problem involve a step size which depends on the norm of a bounded linear operator. Since the computation of the operator norm is very difficult, we formulate our iterative algorithm in such a way that the implementation of the proposed algorithm does not require any prior knowledge of operator norm. Weak convergence results are established under mild conditions. We also establish strong convergence results for a certain class of hierarchical fixed point and split equilibrium problem. Our results generalize some important results in the recent literature.
In this paper, with the help of averaged mappings, we introduce and study a hybrid iterative method to approximate a common solution of a split equilibrium problem and a fixed point problem of a finite collection of nonexpansive mappings. We prove that the sequences generated by the iterative scheme strongly converges to a common solution of the above-said problems. We give some numerical examples to ensure that our iterative scheme is more efficient than the methods of Plubtieng and Punpaeng (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.