We present a general relativistic (GR) model of jet variability in active galactic nuclei due to orbiting blobs in helical motion along a funnel or cone shaped magnetic surface anchored to the accretion disk near the black hole. Considering a radiation pressure driven flow in the inner region, we find that it stabilizes the flow, yielding Lorentz factors ranging between 1.1 and 7 at small radii for reasonable initial conditions. Assuming these as inputs, simulated light curves (LCs) for the funnel model include Doppler and gravitational shifts, aberration, light bending, and time delay. These LCs are studied for quasi-periodic oscillations (QPOs) and the power spectral density (PSD) shape and yield an increased amplitude (∼ 12 %); a beamed portion and a systematic phase shift with respect to that from a previous special relativistic model. The results strongly justify implementing a realistic magnetic surface geometry in Schwarzschild geometry to describe effects on emission from orbital features in the jet close to the horizon radius. A power law shaped PSD with a typical slope of −2 and QPOs with timescales in the range of (1.37 − 130.7) days consistent with optical variability in Blazars, emerges from the simulations for black hole masses M • = (0.5 − 5) × 10 8 M and initial Lorentz factors γ jet,i = 2 − 10. The models presented here can be applied to explain radio, optical, and X-ray variability from a range of jetted sources including active galactic nuclei, X-ray binaries and neutron stars.
We report results from a one‐week multiwavelength campaign to monitor the BL Lacertae object (BL Lac) S5 0716+714 (on 2009 December 9–16). Nine ground‐based telescopes at widely separated longitudes and one space‐based telescope aboard the Swift satellite collected optical data. Radio data were obtained from the Effelsberg and Urumqi observatories and X‐ray data from Swift. In the radio bands, the source shows rapid [∼(0.5–1.5) d] intraday variability with peak amplitudes of up to ∼10 per cent. The variability at 2.8 cm leads by about 1 d the variability at 6 and 11 cm. This time lag and more rapid variations suggest an intrinsic contribution to the source's intraday variability at 2.8 cm, while at 6 and 11 cm, interstellar scintillation (ISS) seems to predominate. Large and quasi‐sinusoidal variations of ∼0.8 mag were detected in the V, R and I bands. The X‐ray data (0.2–10 keV) do not reveal significant variability on a 4 d time‐scale, favouring reprocessed inverse Compton over synchrotron radiation in this band. The characteristic variability time‐scales in radio and optical bands are similar. A quasi‐periodic variation of 0.9–1.1 d in the optical data may be present, but if so it is marginal and limited to 2.2 cycles. Cross‐correlations between radio and optical bands are discussed. The lack of a strong radio–optical correlation indicates different physical causes of variability (ISS at long radio wavelengths, source intrinsic origin in the optical) and is consistent with a high jet opacity and a compact synchrotron component peaking at ≃100 GHz in an ongoing very prominent flux‐density outburst. For the campaign period, we construct a quasi‐simultaneous spectral energy distribution, including γ‐ray data from the Fermi satellite. We obtain lower limits for the relativistic Doppler boosting of δ ≥ 12–26, which for a BL Lac‐type object is remarkably high.
Blazars are a sub-class of quasars with Doppler boosted jets oriented close to the line of sight, and thus efficient probes of supermassive black hole growth and their environment, especially at high redshifts.Here we report on Very Long Baseline Interferometry observations of a blazar J0906+6930 at z = 5.47, which enabled the detection of polarised emission and measurement of jet proper motion at parsec scales. The observations suggest a less powerful jet compared with the general blazar population, including lower proper motion and bulk Lorentz factor. This coupled with a previously inferred high accretion rate indicate a transition from an accretion radiative power to a jet mechanical power based transfer of energy and momentum to the surrounding gas.While alternative scenarios could not be fully ruled out, our results indicate a possibly nascent jet embedded in and interacting with a dense medium resulting in a jet bending.Here, we report the measurement of proper motion and linear polarisation in the parsec-scale jet of this high redshift blazar. We use new 15-GHz data observed with the VLBA in 2017 and 2018, archival VLBA data obtained in 2004-2005 (see details in Supplementary Table 1) and the flux densities reported by the 40 m telescope at the Owens Valley Radio Observatory (OVRO) to explore the evolution of the source morphology and infer its physical characteristics. The jet parameters (lower proper motion and bulk Lorentz factor) are inclined to support a less powerful jet, compared with the general blazar population. The jet interacts with the surrounding interstellar medium resulting in a jet bending and polarised emission.
As the largest radio telescope in the world, the Square Kilometre Array (SKA) will lead the next generation of radio astronomy. The feats of engineering required to construct the telescope array will be matched only by the techniques developed to exploit the rich scientific value of the data. To drive forward the development of efficient and accurate analysis methods, we are designing a series of data challenges that will provide the scientific community with high-quality datasets for testing and evaluating new techniques. In this paper we present a description and results from the first such Science Data Challenge (SDC1). Based on SKA MID continuum simulated observations and covering three frequencies (560 MHz, 1400MHz and 9200 MHz) at three depths (8 h, 100 h and 1000 h), SDC1 asked participants to apply source detection, characterization and classification methods to simulated data. The challenge opened in November 2018, with nine teams submitting results by the deadline of April 2019. In this work we analyse the results for 8 of those teams, showcasing the variety of approaches that can be successfully used to find, characterise and classify sources in a deep, crowded field. The results also demonstrate the importance of building domain knowledge and expertise on this kind of analysis to obtain the best performance. As high-resolution observations begin revealing the true complexity of the sky, one of the outstanding challenges emerging from this analysis is the ability to deal with highly resolved and complex sources as effectively as the unresolved source population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.