Thermoset resin-based composite materials are widely used in the aerospace industry, mainly because of their high stiffness-to-weight and strength-to-weight ratios. A major issue with the use of thermoset resins in fiber composites is processinduced residual stresses that are formed from resin chemical shrinkage during the curing process. These residual stresses within the composite material ultimately result in reduced durability and residual deformations of the final product. Polybenzoxazine (PBZ) polymer resins have demonstrated near-zero volumetric shrinkage during the curing process. Although the low shrinkage of PBZ is promising in terms of reduced process-induced residual stresses, little is known about the physical causes. In this work, molecular dynamics (MD) simulations are performed with a reactive force field to predict the physical properties (gelation point, evolution of network, mass density, and volumetric shrinkage) and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and yield strength) as a function of the cross-linking density and thermal properties (glass transition temperature). The MD modeling procedure is validated herein using experimental measurements of the modeled PBZ resin. The results of this study are used to provide a physical understanding of the zero-shrinkage phenomenon of PBZ. This information is also a critical input to future process modeling efforts for PBZ composites.
The next generation of ultra-high strength composites for structural components of vehicles for manned missions to deep space will likely incorporate flattened carbon nanotubes (flCNTs). With a wide range of
Resin/reinforcement wetting is a key parameter in the manufacturing of carbon nanotube (CNT)-based composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. As experimental measurement of contact angle can be difficult when screening multiple high-performance resins with CNT materials such as CNT bundles or yarns, computational approaches are necessary to facilitate CNT composite material design. A molecular dynamics simulation method is developed to predict the contact angle of high-performance polymer resins on CNT surfaces dominated by aromatic carbon, aliphatic carbon, or a mixture thereof (amorphous carbon). Several resin systems are simulated and compared. The results indicate that the monomer chain length, chemical groups on the monomer, and simulation temperature have a significant impact on the predicted contact angle values on the CNT surface. Difunctional epoxy and cyanate ester resins show the overall highest levels of wettability, regardless of the aromatic/aliphatic nature of the CNT material surface. Tetrafunctional epoxy demonstrates excellent wettability on aliphatic-dominated surfaces at elevated temperatures. Bismaleimide and benzoxazine resins show intermediate levels of wetting, while typical molecular weights of polyether ether ketone demonstrate poor wetting on the CNT surfaces.
The next generation of ultra-high strength composites for structural components of vehicles for manned missions to deep space will likely incorporate flattened carbon nanotubes (flCNTs). With a wide range of high-performance polymers to choose from as the matrix component, efficient and accurate computational modeling can be used to efficiently down-select compatible resins, drive the design of these composites by predicting interface behavior, and provide critical physical insight into the flCNT/polymer interface. In this study, molecular dynamics simulation is used to predict the interaction energy, frictional sliding resistance, and mechanical binding of flCNT/polymer interfaces for epoxy, bismaleimide (BMI), and benzoxazine high-performance resins. The results indicate that the BMI has stronger interfacial interaction and transverse tension binding with flCNT interfaces, while the benzoxazine demonstrates the strongest levels of interfacial friction resistance. Comparison of these results with similar results from the literature for other high-performance resins indicates that BMI demonstrates the best overall compatibility with flCNTs for use in high-performance structural composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.