We present the linear stability analysis of horizontal Poiseuille flow in a fluid overlying a porous medium with anisotropic and inhomogeneous permeability. The generalized Darcy model is used to describe the flow in the porous medium with the Beavers-Joseph condition at the interface of the two layers and the eigenvalue problem is solved numerically. The effect of major system parameters on the stability characteristics is addressed in detail. It is shown that the anisotropic and inhomogeneous modulation of the permeability of the underlying porous layer provides an effective means for passive control of the flow stability.
We study the effect of anisotropy and inhomogeneity in the permeability of the porous layer on the stability of surface waves of an inclined fluid–porous double-layer system. The fluid is assumed to be Newtonian and the porous layer to be Darcian. The porous layer is saturated with the same fluid and the two layers are coupled at the interface via the Beavers–Joseph condition. Linear stability analysis is performed based on a long-wave approximation. The resulting eigenvalue problem is exactly solved up to third order in the wavenumber. The anisotropic behaviour of permeability, cross-stream component of permeability, surface tension and porosity are found to have only higher-order effects on the stability characteristics of the system. On the other hand, the inhomogeneous feature in the streamwise component of permeability play a dominant role in determining the stability of the gravity-driven surface waves; as do other system parameters such as the thickness of the fluid layer relative to that of the porous layer and the Beavers–Joseph coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.