Nonthermal plasma-driven catalysis is an emerging subfield of heterogeneous catalysis that is particularly promising for the chemical transformation of hard-to-activate molecules (e.g., N 2 , CO 2 , CH 4 ). In this Review, we illustrate this promise of plasmaenhanced catalysis, focusing on the ammonia synthesis and methane dry reforming reactions, two reactions that have received wide attention and that illustrate the potential for plasma excitations to mitigate kinetic and thermodynamic obstacles to chemical conversions. We highlight how plasma activation of reactants can provide access to overall reaction rates, conversions, product yields, and/or product distributions unattainable by thermal catalysis at similar temperatures and pressures. Particular emphasis is given to efforts aimed at discerning the underlying mechanisms at play in these systems. We discuss opportunities for and challenges to the advancement of the field.
Li 2 B 12 H 12 , Na 2 B 12 H 12 , and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li-and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li 2 B 12 H 12 and Na 2 B 12 H 12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsic frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric symmetry of the anion and the symmetry of the lattice itself, which can facilitate cation hopping. Finally, facile anion reorientations and other low-frequency thermal vibrations lead to fluctuations in the local potential that enhance cation mobility by creating a local driving force for hopping. We discuss the relevance of each factor for developing new ionic conductivity descriptors that can be used for discovery and optimization of closo-borate solid electrolytes, as well as superionic conductors more generally.
Plasma-assisted catalysis is the process of electrically activating gases in the plasma-phase at low temperatures and ambient pressure to drive reactions on catalyst surfaces. Plasma-assisted catalytic processes combine conventional heterogeneous surface reactions, homogeneous plasma phase reactions, and coupling between plasma-generated species and the catalyst surface. Herein, we perform kinetically controlled ammonia synthesis measurements in a dielectric barrier discharge (DBD) plasma-assisted catalytic reactor. We decouple contributions due to plasma phase reactions from the overall plasma-assisted catalytic kinetics by performing plasma-only experiments. By varying the gas composition, temperature, and discharge power, we probe how macroscopic reaction conditions affect plasma-assisted ammonia synthesis on three different γ-alumina-supported transition metal catalysts (Ru, Co, and Ni). Our experiments indicate that the overall reaction and plasma-phase reaction are first-order in both N2 and H2. In contrast, the rate contributions due to plasma-catalyst interactions are first-order in N2 but zeroth order in H2. Furthermore, we find that the tuning of the plasma discharge power is more effective in controlling catalytic performance than the increasing of bulk gas temperature in plasma-assisted ammonia synthesis. Finally, we show that adding a catalyst to the DBD reaction alters the way that productivity scales with the specific energy input (SEI).
Polyborane salts based on B12H12 2–, B10H10 2–, CB11H12 –, and CB9H10 – demonstrate high Li and Na superionic conductivity that makes them attractive as electrolytes in all-solid-state batteries. Their chemical and structural diversity creates a versatile design space that could be used to optimize materials with higher conductivity at lower temperatures; however, many mechanistic details remain enigmatic, including reasons why certain known modifications lead to improved performance. We use extensive ab initio molecular dynamics simulations to explore the dependence of ionic conductivity on cation/anion pair combinations for Li and Na polyborane salts. Further simulations are used to probe the influence of local modifications to chemistry, stoichiometry, and composition. Carbon doping, anion alloying, and cation off-stoichiometry are found to favorably introduce intrinsic disorder, facilitating local deviation from the expected cation population. Lattice expansion likewise has a positive effect by aiding anion reorientations that are critical for conduction. Implications for engineering polyboranes for improved ionic conductivity are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.