We demonstrate a novel miniaturized multimodal coherent anti-Stokes Raman scattering (CARS) microscope based on microelectromechanical systems (MEMS) scanning mirrors and custom miniature optics. A single Ti:sapphire femtosecond pulsed laser is used as the light source to produce the CARS, two photon excitation fluorescence (TPEF) and second harmonic generation (SHG) images using this miniaturized microscope. The high resolution and distortion-free images obtained from various samples such as a USAF target, fluorescent and polystyrene microspheres and biological tissue successfully demonstrate proof of concept, and pave the path towards future integration of parts into a handheld multimodal CARS probe for non- or minimally-invasive in vivo imaging.
Beamed propulsion of a light sail based on radiation pressure benefits from a passively self-stabilizing "beam riding" diffractive film. We describe the optomechanics of a rigid non-spinning light sail that mitigates catastrophic sail walk-off and tumbling by use of a flat axicon diffraction grating. A linear stability analysis and numerical integration of the coupled translational and rotational equations of motion are examined. Stability is traded against longitudinal acceleration. The examined system achieves 90% of the theoretical longitudinal force limit and stability against a relative sail translation up to 30% of the sail radius when the payload is attached to a long boom. Administration (NASA, Innovative Advanced Concepts Office), Award Number 80NSSC18K0867. We are grateful to Ying-Ju Lucy Chu and Amber Dubill, Rochester Institute of Technology, for discussions related to radiation pressure and rigid body dynamics, and to Les Johnson and Andy Heaton, NASA Marshall Space Flight Center, for discussions on light sailing.
A laser beam rider is a large-scale optical structure designed so that it is attracted toward the optical axis, while also affording forward propulsion via radiation pressure along the beam path. Such structures form the basis of laser-driven light sails. Experimental measurements are described whereby a thin diffractive axicon film is shown to exhibit a natural restoring force when its axis is displaced from the optical axis. This effect is attributed to the optical momentum change of diffracted light. Whereas continuous illumination supports harmonic motion, modulated illumination is shown to support both parametric gain and parametric damping. The
12.7
µ
m
period photopolymer axicon grating was suspended in a vacuum torsion oscillator and irradiated with a 1.5 W near-infrared laser modulated at a period of 38 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.