Channel estimation is a formidable challenge in mmWave Multiple Input Multiple Output (MIMO) systems due to the large number of antennas. Therefore, compressed sensing (CS) techniques are used to exploit channel sparsity at mmWave frequencies to calculate fewer dominant paths in mmWave channels. However, conventional CS techniques require a higher training overhead for efficient recovery. In this paper, an efficient extended alternation direction method of multipliers (Ex-ADMM) is proposed for mmWave channel estimation. In the proposed scheme, a joint optimization problem is formulated to exploit low rank and channel sparsity individually in the antenna domain. Moreover, a relaxation factor is introduced which improves the proposed algorithm’s convergence. Simulation experiments illustrate that the proposed algorithm converges at lower Normalized Mean Squared Error (NMSE) with improved spectral efficiency. The proposed algorithm also ameliorates NMSE performance at low, mid and high Signal to Noise (SNR) ranges.
Millimeter wave (mmWave) relying upon the multiple output multiple input (MIMO) is a new potential candidate for fulfilling the huge emerging bandwidth requirements. Due to the short wavelength and the complicated hardware architecture of mmWave MIMO systems, the conventional estimation strategies based on the individual exploitation of sparsity or low rank properties are no longer efficient and hence more modern and advance estimation strategies are required to recapture the targeted channel matrix. Therefore, in this paper, we proposed a novel channel estimation strategy based on the symmetrical version of alternating direction methods of multipliers (S-ADMM), which exploits the sparsity and low rank property of channel altogether in a symmetrical manner. In S-ADMM, at each iteration, the Lagrange multipliers are updated twice which results symmetrical handling of all of the available variables in optimization problem. To validate the proposed algorithm, numerous computer simulations have been carried out which straightforwardly depicts that the S-ADMM performed well in terms of convergence as compared to other benchmark algorithms and also able to provide global optimal solutions for the strictly convex mmWave joint channel estimation optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.