Hardware-in-the-loop simulations of two interacting bodies are often accompanied by a time delay. The time delay, however small, may lead to instability in the hardware-in-the-loop system. The present work investigates the source of instability in a two spacecraft system model with a time-delayed contact force feedback. A generic compliance-device-based contact force model is proposed with elastic, viscous, and Coulomb friction effects in three dimensions. A 3D nonlinear system model with time delay is simulated, and the effect of variations in contact force model parameters is studied. The system is then linearized about a nominal state to determine the stability regions in terms of parameters of the spring-dashpot contact force model by the pole placement method. Furthermore, the stability analysis is validated for the nonlinear system by energy observation for both the stable and unstable cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.