Optical character recognition (OCR) is a technology to digitize a paper-based document to digital form. This research studies the extraction of the characters from a Thai vehicle registration certificate via a Google Cloud Vision API and a Tesseract OCR. The recognition performance of both OCR APIs is also examined. The 84 color image files comprised three image sizes/resolutions and five image characteristics. For suitable image type comparison, the greyscale and binary image are converted from color images. Furthermore, the three pre-processing techniques, sharpening, contrast adjustment, and brightness adjustment, are also applied to enhance the quality of image before applying the two OCR APIs. The recognition performance was evaluated in terms of accuracy and readability. The results showed that the Google Cloud Vision API works well for the Thai vehicle registration certificate with an accuracy of 84.43%, whereas the Tesseract OCR showed an accuracy of 47.02%. The highest accuracy came from the color image with 1024×768 px, 300dpi, and using sharpening and brightness adjustment as pre-processing techniques. In terms of readability, the Google Cloud Vision API has more readability than the Tesseract. The proposed conditions facilitate the possibility of the implementation for Thai vehicle registration certificate recognition system.
In this study, we aimed to find an optimized approach to improving facial and masked facial recognition using machine learning and deep learning techniques. Prior studies only used a single machine learning model for classification and did not report optimal parameter values. In contrast, we utilized a grid search with hyperparameter tuning and nested cross-validation to achieve better results during the verification phase. We performed experiments on a large dataset of facial images with and without masks. Our findings showed that the SVM model with hyperparameter tuning had the highest accuracy compared to other models, achieving a recognition accuracy of 0.99912. The precision values for recognition without masks and with masks were 0.99925 and 0.98417, respectively. We tested our approach in real-life scenarios and found that it accurately identified masked individuals through facial recognition. Furthermore, our study stands out from others as it incorporates hyperparameter tuning and nested cross-validation during the verification phase to enhance the model's performance, generalization, and robustness while optimizing data utilization. Our optimized approach has potential implications for improving security systems in various domains, including public safety and healthcare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.