Multifunctionality in polymers facilitates their application in emerging technologies. Electrical fields are a preferred stimulus because of the speed and ease of application to bulk polymers. While a wide range of electrically triggered actuators are developed, and electrically controlled adhesion between gels is demonstrated, modification of bulk mechanical properties via electrical stimuli remains elusive. Polymers with covalently incorporated ionic charge (polyelectrolytes) should be well suited to achieving this goal since the mechanical properties depend on electrostatic interactions and these charges are intrinsically susceptible to electric fields. Molecular dynamics simulations are utilized here to investigate whether electric fields can modulate the mechanical properties of polyelectrolytes and to understand the governing mechanisms. Mechanical property modulation by electric field is found to be sensitive to the charge distribution—charges must be tightly attached to the polymer backbone, and responsivity is greater if a single backbone contains both positive and negative charges. The dominant mechanisms are reorientation and stretching of the polymer chains, which also elongate the ionic clusters to maintain strong electrostatic interactions throughout deformation. These insights are critical for future experimental realization of polymers with electric field regulated mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.