A simple and selective enzyme-free electrochemical sensor for H2O2 has been designed and fabricated using ionic liquid (IL) tagged anthraquinone (AQ) modified electrode (AQ-PF6-IL). This newly synthesized AQ- PF6-IL has been systematically characterized, after which it has been immobilized over a screen-printed electrode to produce AQ-PF6-IL/SPE. The electrochemical investigation of AQ-PF6-IL/SPE displayed a set of distinct redox peaks attributable to the anthraquinone/anthrahydroquinone redox pair. Interestingly, AQ-PF6-IL/SPE has shown enhanced peak current at reduced formal potential for AQ, when compared to AQ/SPE. Further, the electrocatalytic activity of AQ-PF6-IL/SPE towards the reduction of H2O2 was investigated with the sequential addition of H2O2. A rapid and appreciable enhancement in cathodic peak currents was observed and thus demonstrating the excellent electrochemical reduction of H2O2 at the newly developed sensor. Besides, AQ-PF6-IL/SPE established a good linear behaviour over a concentration range of 10-1228 μM with a high sensitivity of 0.281 μA μM-1 cm-2 and low detection limit of 2.87 μM. The fabricated sensor displayed excellent stability, good anti-interference ability, and acceptable reproducibility. The superior properties of the developed sensor could be attributed to the newly designed AQ-PF6-IL, wherein the redox characteristics of AQ mediator are integrated with the high stability and conductivity of IL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.