The present work deals with achieving viscosity reduction in polymer solutions using ultrasound-based treatment approaches. Use of simple additives such as salts, or surfactants and introduction of air at varying flow rates as process intensifying parameters have been investigated for enhancing the degradation of polyvinyl pyrrolidone (PVP) using ultrasonic irradiation. Sonication is carried out using an ultrasonic horn at 36 kHz frequency at an optimized concentration (1%) of the polymer. The degradation behavior has been characterized in terms of the change in the viscosity of the aqueous solution of PVP. The intrinsic viscosity of the polymer has been shown to decrease to a limiting value, which is dependent on the operating conditions and use of different additives. Similar extent of viscosity reduction has been observed with 1% NaCl or 0.1% TiO2 at optimized depth of horn and 27°C, indicating the superiority of titanium dioxide as an additive. The combination of ultrasound and ultraviolet (UV) irradiation results in a significantly faster viscosity reduction as compared to the individual operations. A kinetic analysis for the degradation of PVP has also been carried out. The work provides a detailed understanding of the role of the operating parameters and additives in deciding the extent of reduction in the intrinsic viscosity of PVP solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.