The ability of somatosensory neurons to perceive mechanical stimuli relies on specialized mechanotransducing proteins and their molecular environment. Only recently has the identity of a major transducer of mechanical forces in vertebrates been revealed by the discovery of Piezo2. Further work has established its pivotal role for innocuous touch in mice. Therefore, Piezo2 offers a unique platform for the molecular investigation of somatosensory mechanosensation. We performed a mass spectrometry-based interactomics screen on native Piezo2 in somatosensory neurons of mouse dorsal root ganglia (DRG). Stringent and quantitative data analysis yielded the identity of 36 novel binding partners of Piezo2. The biological significance of this data set is reflected by functional experiments demonstrating a role for Pericentrin in modulating Piezo2 activity and membrane expression in somatosensory neurons. Collectively, our findings provide a framework for understanding Piezo2 physiology and serve as a rich resource for the molecular dissection of mouse somatosensation.
Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons.
The transient receptor potential A1 (TRPA1) channel is essential for vertebrate pain. Even though TRPA1 activation by ligands has been studied extensively, the molecular machinery regulating TRPA1 is only poorly understood. Using an unbiased proteomics-based approach we uncovered the physical association of Annexin A2 (AnxA2) with native TRPA1 in mouse sensory neurons. AnxA2 is enriched in a subpopulation of sensory neurons and coexpressed with TRPA1. Furthermore, we observe an increase of TRPA1 membrane levels in cultured sensory neurons from AnxA2-deficient mice. This is reflected by our calcium imaging experiments revealing higher responsiveness upon TRPA1 activation in AnxA2-deficient neurons. In vivo these findings are associated with enhanced nocifensive behaviors specifically in TRPA1-dependent paradigms of acute and inflammatory pain, while heat and mechanical sensitivity as well as TRPV1-mediated pain are preserved in AnxA2-deficient mice. Our results support a model whereby AnxA2 limits the availability of TRPA1 channels to regulate nociceptive signaling in vertebrates.
Highlights d Glabrous skin mechanosensitivity declines in maturing mice until 12 weeks of age d An improved tape assay uncovers similar changes in hairy skin mechanosensitivity d In vitro, Piezo2-mediated mechanotransduction decreases during maturation d Patch-seq finds differential gene expression across mechanosensory neuron types
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.