Complex regional pain syndrome (CRPS) is a painful condition affecting one or more extremities of the body, marked by a wide variety of symptoms and signs that are often difficult to manage because the pathophysiology is incompletely understood. Thus, diverse treatments might be ineffective. A recent report revealed the presence of autoantibodies against differentiated autonomic neurons in CRPS patients. However, it remained unclear how the antibodies act in the development of CRPS. We therefore aimed to characterize these antibodies and identify target antigens. Functional properties of affinity-purified immunoglobulin G of control subjects or CRPS patients were assessed using a cardiomyocyte bioassay. Putative corresponding receptors were identified using antagonistic drugs, and synthesized peptide sequences corresponding to segments of these receptors were used to identify the target epitopes. Chinese hamster ovary cells were transfected with putative receptors to ensure observed binding. Further, changes in the intracellular Ca(2+) concentration induced by agonistic immunoglobulin G were measured using the Ca(2+)-sensitive fluorescent dye fura-2 assay. Herein, we demonstrate the presence of autoantibodies in a subset of CRPS patients with agonistic-like properties on the β(2) adrenergic receptor and/or the muscarinic-2 receptor. We identified these autoantibodies as immunoglobulin G directed against peptide sequences from the second extracellular loop of these receptors. The identification of functionally active autoantibodies in serum samples from CRPS patients supports an autoimmune pathogenesis of CRPS. Thus, our findings contribute to the further understanding of this disease, could help in the diagnosis in future, and encourage new treatment strategies focusing on the immune system.
Endophytic actinobacteria play an important role in growth promotion and development of host plant by producing enormous quantities of novel bioactive natural products. In the present investigation, 169 endophytic actinobacteria were isolated from endospheric tissues of Rhynchotoechum ellipticum. Based on their antimicrobial potential, 81 strains were identified by 16rRNA gene analysis, which were taxonomically grouped into 15 genera. All identified strains were screened for their plant growth promoting attributes and, for the presence of modular polyketide synthases (PKSI, PKSII and nonribosomal peptide synthetase (NRPS) gene clusters to correlate the biosynthetic genes with their functional properties. Expression studies and antioxidant potential for four representative strains were evaluated using qRT-PCR and DPPH assay respectively. Additionally, six antibiotics (erythromycin, ketoconazole, fluconazole, chloramphenicol, rifampicin and miconazole) and nine phenolic compounds (catechin, kaempferol, chebulagic acid, chlorogenic acid, Asiatic acid, ferulic acid, arjunic acid, gallic acid and boswellic acid) were detected and quantified using UHPLC-QqQLIT-MS/MS. Furthermore, three strains (BPSAC77, 121 and 101) showed the presence of the anticancerous compound paclitaxel which was reported for the first time from endophytic actinobacteria. This study provides a holistic picture, that endophytic actinobacteria are rich bacterial resource for bioactive natural products, which has a great prospective in agriculture and pharmaceutical industries.
Complex regional pain syndrome, which is characterised by pain and trophic disturbances, develops frequently after peripheral limb trauma. There is an increasing evidence of an involvement of the immune system in CRPS, and recently we showed that CRPS patients have autoantibodies against nervous system structures. Therefore we tested the sera of CRPS patients, neuropathy patients and healthy volunteers for surface-binding autoantibodies to primary cultures of autonomic neurons and differentiated neuroblastoma cell lines using flow cytometry. Thirteen of 30 CRPS patients, but none of 30 healthy controls and only one of the 20 neuropathy sera had specific surface binding to autonomic neurons (p<0.001). The majority of the sera reacted with both sympathetic and myenteric plexus neurons. Interestingly, 6/30 CRPS sera showed binding to undifferentiated SH-SY5Y neuroblastoma cells. However, differentiation of SH-SY5Y into a cholinergic phenotype induced a surface antigen, which is recognised by 60% of CRPS sera (18/30), but not by controls (p<0.001). Our data show that about 30-40% of CRPS patients have surface-binding autoantibodies against an inducible autonomic nervous system autoantigen. These data support an autoimmune hypothesis in CRPS patients. Further studies must elucidate origin and function of these autoantibodies in CRPS.
BackgroundResearch of natural products from traditionally used medicinal plants to fight against the human ailments is fetching attention of researchers worldwide. Bidens pilosa Linn. var. Radiata (Asteraceae) is well known for its folkloric medicinal use against various diseases from many decades. Mizoram, North East India, has high plant diversity and the use of this plant as herbal medicine is deep rooted in the local tribes. The present study was executed to understand the pharmacological potential of B. pilosa leaves extract.MethodsThe antimicrobial potential was determined using agar well diffusion and broth microdilution method against bacterial and yeast pathogens. Cytotoxicity was evaluated using MTT and apoptotic DNA fragmentation assays. Further, the antioxidant ability of the extract was analysed using DPPH and ABTS free radical scavenging assay. Mosquitocidal activity was evaluated against third in-star larvae of C. quinquefasciatus using dose response and time response larvicidal bioassay. Additionally, the major phenolic and volatile compounds were determined using UHPLC-QqQLIT-MS/MS and GC/MS respectively.ResultsWe found that the extract showed highest antimicrobial activity against E. coli (MIC 80 μg/mL and IC50 110.04 μg/mL) and showed significant cytotoxicity against human epidermoid carcinoma (KB-3-1) cells with IC50 values of 99.56 μg/mL among the tested cancer cell lines.The IC50 values for scavenging DPPH and ABTS was 80.45 μg/mL and 171.6 μg/mL respectively. The extract also showed the high phenolics (72 μg GAE/mg extract) and flavonoids (123.3 μg Quercetin /mg extract). Lastly, five bioactive and six volatile compounds were detected using UHPLC-QqQLIT-MS/MS and GC-MS respectively which may be responsible for the plant’s bioactivities. An anticancerous compound, Paclitaxel was detected and quantified for the first time from B. pilosa leaves extract, which further showed the anticancerous potential of the tested extract.ConclusionOn the basis of the present investigation, we propose that the leaf extract of B. pilosa might be a good candidate for the search of efficient environment friendly natural bioactive agent and pharmaceutically important compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.