Satellite's communication system is used to communicate under significant distance and circumstances where the other communication systems are not comfortable.Since all the data are exchanged over a public channel, so the security of the data is an essential component for the communicating parties. Both key exchange and authentication are two cryptographic tools to establish a secure communication between two parties. Currently, various kinds of authentication protocols are available to establish a secure network, but all of them depend on number-theoretical (discrete logarithm problem/factorization assumption) hard assumptions. Due to Shor's and Grover's computing algorithm number theoretic assumptions are breakable by quantum computers. Although Kumar and Garg have proposed a quantum attack-resistant protocol for satellite communication, it cannot resist stolen smart card attack. We have analyzed that how Kumar and Garg is vulnerable to the stolen smart card attack using differential power analysis attack described in He et al and Chen and Chen. We have also analyzed the modified version of signal leakage attack and sometimes called improved signal leakage attack on Kumar and Garg's protocol.We have tried to construct a secure and efficient authentication protocol for satellites communication that is secure against quantum computing. This is more efficient as it requires only three messages of exchange. This paper includes security proof and performance of the proposed authentication and key agreement protocol.
The outbreak of coronavirus has caused widespread global havoc, and the implementation of lockdown to contain the spread of the virus has caused increased levels of online healthcare services. Upgraded network technology gives birth to a new interface “telecare medicine information systems” in short TMIS. In this system, a user from a remote area and a server located at the hospital can establish a connection to share the necessary information between them. But, it is very clear that all the information is always being transmitted over a public channel. Chaotic map possesses a dynamic structure and it plays a very important role in the construction of a secure and efficient authentication protocols, but they are generally found vulnerable to identity-guess, password-guess, impersonation, and stolen smart-card. We have analyzed (Li et al. in Fut Gen Comput Syst 840:149–159, 2018; Madhusudhan and Nayak Chaitanya in A robust authentication scheme for telecare medical information systems, 2008; Zhang et al in Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme, 2017; Dharminder and Gupta in Pratik security analysis and application of Chebyshev Chaotic map in the authentication protocols, 2019) and found that Bergamo’s attack (IEEE Trans Circ Syst 52(7):1382–1393, 2005) cannot be resisted by the protocol. Although few of the protocols ensures efficient computations but they cannot ensure an anonymous and secure communication. Therefore, we have proposed a secure and efficient chaotic map based authentication protocol that can be used in telecare medicine information system. This protocol supports verified session keys with only two messages of exchange. Moreover, we have analysed the performance of proposed protocol with relevant protocols and it is being implemented in “Automated Validation of Internet Security Protocols and Applications” respectively.
Elliptic Curve Cryptography recently gained a lot of attention in industry. The principal attraction of ECC compared to RSA is that it offers equal security for a smaller key size. The present paper includes the study of two elliptic curve E E E − = ∪ . We also illustrate the coding of points over E, secret key exchange and encryption/decryption methods based on above said elliptic curve. Since our proposed schemes are based on elliptic curve of the particular type, therefore the proposed schemes provides a highest strength-per-bit of any cryptosystem known today with smaller key size resulting in faster computations, lower power assumption and memory. Another advantage is that authentication protocols based on ECC are secure enough even if a small key size is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.