The purpose of this study was to investigate the effect of Silver nanoparticle immobilized Halloysite Nanotubes (HNT/Ag) fillers on physicochemical, mechanical, and biological properties of novel experimental dental resin composite in order to compare with the properties of corresponding composites containing conventional glass fillers. Methods: Dental resin (Bis-GMA/TEGDMA with ratio 70/30) composites were prepared by incorporation of varied mass fraction of HNT/Ag. Experimental composites were divided into six groups, one control group and five experimental groups containing mass fraction 1 to 10.0 wt. % of HNT/Ag. Mechanical properties of the dental composites were recorded. Degree of conversion and depth of cure of the dental resin composites were assessed. Antimicrobial properties were assessed using agar diffusion test and evaluation of cytotoxicity were performed on NIH-3T3 cell line. Results: The inclusion of mass fractions (1-5 wt. %) of the HNT/Ag in dental resins composites, significantly improved mechanical properties. While, addition of larger mass fractions (7.5 and 10 wt. %) of the HNT/Ag did not show further improvement in the mechanical properties of dental resins composites. Theses composites also demonstrated satisfactory depth of cure and degree of conversion. A significant antibacterial activity was observed on S. mutans. No significant cytotoxicity was found on NIH-3T3 cell lines. Conclusion: The incorporation of HNT/Ag in Bis-GMA/TEGDMA dental resins composites resulted in enhancement in mechanical as well as biological properties for dental applications. Clinical significance: HNT/Ag containing dental composite is proposed to be highly valuable in the development of restorative dental material for patients with high risk of dental caries.
Nanomaterials have unique and superior properties such as high surface area and nanoscale size, makes them highly advanced and vital for rapid diagnosis and beneficial in treatment of numerous diseases in health sector. Joint efforts from multiple disciplines have contributed to the developments of advanced nanomaterials and enabled their uses in dentistry. These advanced nanomaterials can give more promising results in diagnosis and treatment procedures compared to their conventional counterparts. This review outlines the nanomaterials available and used in dentistry and will further go into discussing the shapes and compositions of various nanomaterials relevant to dentistry. Incorporating nanoparticles in dental restorative materials can be useful for preventing and/or managing dental caries. Integrating the sciences of nanomaterials and biotechnology, nanomaterials could potentially be revolutionary in improving oral health by providing preventative and diagnostic measures; they could also have effects on repairing damaged dental tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.