In this work, an isolated modular resonant circuit with effective voltage regulation is presented as front-end for multilevel inverter system to interface renewable sources of energy with micro grid. Inputs of each module of the converter are connected to low-voltage DC sources. Modular-structured module outputs may be linked in sequence or parallel to attain the desired DC link capacitor voltage for multilevel inverter. The proposed converter overcomes imbalance in the capacitor voltage of diode-clamped inverter structure. Interleaved phase shift of 90 • is supplied among the gate pulses of all four modules that minimizes the input-side current ripples. An effective zero voltage switching (ZVS) is achieved over wide load range using duty cycle and frequency-duty cycle double control method to improve system performance at light load condition. Adopting powder core magnetics and low forward voltage insulated-gate bipolar transistors (IGBTs) reduces magnetic and conduction loss. A 12-kW prototype of the designed modular resonant converter was verified by experimentation with a different-level diode-clamped inverter structures. KEYWORDS high frequency (HF), insulated-gate bipolar transistor (IGBT), resonant converter, zero voltage switching (ZVS) wileyonlinelibrary.com/journal/cta
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.