CONTEXT: Major clinical decisions are based on the laboratory test results where preanalytical errors are an important cause of repeat collections in patients. Identification of problem areas and continuous training of phlebotomy staff are important tools in reducing these errors. AIMS: In this study, we looked at the most common causes of sample rejection in our setting and the efficacy of the corrective measures and training processes for staff in reducing preanalytical errors. SETTINGS AND DESIGNS: This prospective study was conducted at the laboratory diagnostic services of a tertiary care oncology center, with a hematopoietic stem cell transplant unit during the period of 2012–2017 in two phases. Sample rejections from various wards were analyzed for types of rejections. MATERIALS AND METHODS: In the first phase, we analyzed the problem areas (year 2012). Following a root cause analysis, current practices of training were altered. In the second phase (2013–2017), we studied the effects of these measures. STATISTICAL ANALYSIS USED: The percent variation and P value for significance in sample rejections were calculated. RESULTS: During the year 2012, 0.36% samples were rejected by laboratory. Following interventions in the period from 2013 to 2017, samples rejected dropped to 0.19% (P < 0.0001), 0.09% (P < 0.0001), 0.09% (P = 0.8387), 0.05% (P = 0.0004), and 0.05% (P = 0.329), respectively. The reduction was significant from surgical oncology ward (P = 0.0107) and intensive care unit (P = 0.0007). From 2013 to 2017, errors significantly reduced to 0.015% for hemolyzed samples (P = 0.0001), 0.005% for contaminated samples, 0.036% for clotted samples, and 0.019% for labeling errors. CONCLUSION: Intervention in the form of targeted training helps reduce errors and improves the quality of results generated and contributes to better clinical outcomes.
Objectives This real-world study was conducted to assess the adverse effects following immunization (AEFI) and immunogenicity of ChAdO×1 nCoV-19 vaccine in terms of neutralising antibody titers and to study the effects of covariates such as age, sex, comorbidities and prior COVID status on these outcomes. Also, the effectiveness of the vaccine based on interval between the two doses was also investigated. Methods A total of 512 participants (M/F=274/238) aged 35(18–87) years comprising a mixed population of healthcare workers, other frontline workers and general public were enrolled between March and May 2021. Records for adverse events if any were collected telephonically by following up with participants up to 6 months post first dose and graded as per Common Terminology Criteria for Adverse Events (CTCAE) version 5. Blood samples for measuring antibody titers against the receptor binding domain (RBD) were collected serially using a convenient sampling strategy up to 6 months after the first dose. Data on breakthrough COVID infection was collected telephonically till December 2021. Results Incidence of local reactions was higher after first dose at 33.4 % (171/512) compared to those after second dose at 12.9 % (66/512). Commonest side effect observed was injection site pain after the first (87.1 %; 149/171) and second (87.9 %; 56/66) dose respectively. Among systemic reactions, fever was the most common manifestation followed by myalgia and headache. Female sex (p<0⸱001) and age less than 60 years (p<0⸱001) had significantly higher predilection for systemic toxicities. Age ≤60 years (p=0.024) and prior-COVID (p<0.001) were found to be significantly associated with higher antibody titers, however, no association was found between these variables and breakthrough COVID infection. Longer spacing between the doses (≥6 weeks) was found to offer better protection against breakthrough infection compared to a spacing of 4 weeks. All breakthroughs were mild-moderate in severity, not requiring hospitalization. Conclusions The ChAdOx1 nCov-19 vaccine is apparently safe and effective against SARS-CoV-2 virus infection. Prior COVID infection and younger age group achieve higher antibody titers, but no additional protection. Delaying the second dose up to at least 6 weeks is more effective compared to shorter spacing between doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.