Many cancer immunotherapies developed in experimental animals have been tested in clinical trials. Although some have shown modest clinical effects, most have not been effective. Recent studies have identified myeloid-origin cells that are potent suppressors of tumor immunity and therefore a significant impediment to cancer immunotherapy. “Myeloid-derived suppressor cells” (MDSC) accumulate in the blood, lymph nodes, and bone marrow and at tumor sites in most patients and experimental animals with cancer and inhibit both adaptive and innate immunity. MDSC are induced by tumor-secreted and host-secreted factors, many of which are proinflammatory molecules. The induction of MDSC by proinflammatory mediators led to the hypothesis that inflammation promotes the accumulation of MDSC that down-regulate immune surveillance and antitumor immunity, thereby facilitating tumor growth. This article reviews the characterization and suppressive mechanisms used by MDSC to block tumor immunity and describes the mechanisms by which inflammation promotes tumor progression through the induction of MDSC.
Chronic inflammation is a complex process that promotes carcinogenesis and tumor progression; however, the mechanisms by which specific inflammatory mediators contribute to tumor growth remain unclear. We and others recently demonstrated that the inflammatory mediators IL-1β, IL-6, and PGE2 induce accumulation of myeloid-derived suppressor cells (MDSC) in tumor-bearing individuals. MDSC impair tumor immunity and thereby facilitate carcinogenesis and tumor progression by inhibiting T and NK cell activation, and by polarizing immunity toward a tumor-promoting type 2 phenotype. We now show that this population of immature myeloid cells induced by a given tumor share a common phenotype regardless of their in vivo location (bone marrow, spleen, blood, or tumor site), and that Gr1highCD11bhighF4/80−CD80+IL4Rα+/−Arginase+ MDSC are induced by the proinflammatory proteins S100A8/A9. S100A8/A9 proteins bind to carboxylated N-glycans expressed on the receptor for advanced glycation end-products and other cell surface glycoprotein receptors on MDSC, signal through the NF-κB pathway, and promote MDSC migration. MDSC also synthesize and secrete S100A8/A9 proteins that accumulate in the serum of tumor-bearing mice, and in vivo blocking of S100A8/A9 binding to MDSC using an anti-carboxylated glycan Ab reduces MDSC levels in blood and secondary lymphoid organs in mice with metastatic disease. Therefore, the S100 family of inflammatory mediators serves as an autocrine feedback loop that sustains accumulation of MDSC. Since S100A8/A9 activation of MDSC is through the NF-κB signaling pathway, drugs that target this pathway may reduce MDSC levels and be useful therapeutic agents in conjunction with active immunotherapy in cancer patients.
Although the immune system has the potential to protect against malignancies, many individuals with cancer are immunosuppressed. Myeloid-derived suppressor cells (MDSC) are elevated in many patients and animals with tumors, and contribute to immune suppression by blocking CD4+ and CD8+ T cell activation. Using the spontaneously metastatic 4T1 mouse mammary carcinoma, we now demonstrate that cross-talk between MDSC and macrophages further subverts tumor immunity by increasing MDSC production of IL-10, and by decreasing macrophage production of IL-12. Cross-talk between MDSC and macrophages requires cell-cell contact, and the IL-12 decrease is dependent on MDSC production of IL-10. Treatment with the chemotherapeutic drug gemcitabine, which reduces MDSC, promotes rejection of established metastatic disease in IL-4Rα−/− mice that produce M1 macrophages by allowing T cell activation, by maintaining macrophage production of IL-12, and by preventing increased production of IL-10. Therefore, MDSC impair tumor immunity by suppressing T cell activation and by interacting with macrophages to increase IL-10 and decrease IL-12 production, thereby promoting a tumor-promoting type 2 response, a process that can be partially reversed by gemcitabine.
Myeloid-derived suppressor cells (MDSC) are present in most cancer patients and are potent inhibitors of T-cell-mediated antitumor immunity. Their inhibitory activity is attributed to production of arginase, reactive oxygen species, inducible nitric oxide synthase, and interleukin-10. Here we show that MDSCs also block T-cell activation by sequestering cystine and limiting the availability of cysteine. Cysteine is an essential amino acid for T-cell activation because T cells lack cystathionase, which converts methionine to cysteine, and because they do not have an intact x c − transporter and therefore cannot import cystine and reduce it intracellularly to cysteine. T cells depend on antigen-presenting cells (APC), such as macrophages and dendritic cells, to export cysteine, which is imported by T cells via their ASC neutral amino acid transporter. MDSCs express the x c − transporter and import cystine; however, they do not express the ASC transporter and do not export cysteine. MDSCs compete with APC for extracellular cystine, and in the presence of MDSCs, APC release of cysteine is reduced, thereby limiting the extracellular pool of cysteine. In summary, MDSCs consume cystine and do not return cysteine to their microenvironment, thereby depriving T cells of the cysteine they require for activation and function. Cancer Res; 70(1); 68-77. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.