BackgroundMicroglial cells, which are resident macrophages of the central nervous system, play important roles in immune responses and pathogenesis. Japanese encephalitis virus (JEV) is a neurotropic virus that infects microglial cells in brain. Several microRNAs including miR-155 and miR-146a play an important role in defining the microglia inflammatory profile. In this study, we have investigated the effect of miR-155 and miR-146a modulation on JEV infection as well as innate immune responses in human microglial cells.MethodsIn vitro studies were performed in JEV-infected human microglial CHME3 cells. miR-155 or miR-146a were overexpressed and total RNA and protein were extracted following JEV-infection. Expression of genes involved in innate immune responses was studied by PCR array, quantitative real-time PCR (qPCR), western blot and Fluorescence activated cell sorter (FACS). JEV replication was monitored by studying the viral RNA by qPCR, protein by western blot, and titres by plaque assay.ResultsOverexpression of miR-155 in CHME3 cells resulted in significantly reduced JEV replication whereas miR-146a overexpression had an insignificant effect. Additionally, interferon regulatory factor 8 (IRF8) and complement factor H (CFH) were induced during JEV infection; however, this induction was attenuated in miR-155 overexpressing cells following JEV infection. Further, JEV-induced NF-κB regulated downstream gene expression was attenuated. Interestingly, an increased level of CD45, a negative regulator of microglia activation and a reduced phosphorylated-Signal Transducers and Activators of Transcription (p-STAT1) expression was observed in miR-155 overexpressing cells upon JEV infection.ConclusionInduction of miR-155 in human microglial cells may negatively modulate JEV-induced innate immune gene expression and may have a beneficial role in limiting JEV replication in human microglial cells.
Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.