Adverse health effects due to exposure to particulate matter (PM) are among the most important global environmental health risks. However, the effects of exposure to secondary organic aerosols (SOA), a major component of the global aerosol, are largely unknown. Here we exposed lung epithelial cells (A549) to fresh and aged SOA particles and investigated the effect of SOA atmospheric aging on cell viability and gene expression. Naphthalene-and α-pinene-derived SOA were formed in an oxidation flow reactor that simulates atmospheric SOA formation and aging dominated by OH radical oxidation under NO x -free conditions. The SOA mass and chemical composition were characterized on-line using a scanning mobility particle sizer and aerosol mass spectrometer. Fresh and aged SOA were directed to an air−liquid interface cell exposure system. Aged naphthalene-and αpinene-derived SOA were somewhat more toxic than fresh SOA. Aged naphthalene SOA contained peroxide levels that were higher than those of fresh SOA. The level of induction of Nrf2 signaling increased following exposure to aged naphthalene SOA. Given the global prevalence of SOA and its observed toxicity, this study calls for more studies aimed at understanding the underlying mechanics.
It has been hypothesized that the cytotoxicity of secondary organic aerosols (SOA) is mediated through the formation of reactive oxygen species (ROS) in the exposed cells. Here, lung epithelial cells (A549) residing at the air–liquid interface were exposed to proxies of anthropogenic and biogenic SOA that were photochemically aged under varying nitrogen oxide (NOx) concentrations in an oxidation flow reactor. The total organic peroxides and ROS radical content in the SOA were quantified by the iodometric spectrophotometric method and by continuous-wave electron paramagnetic resonance. The effect of the exposure was evaluated by measuring cell viability and cellular ROS production following the exposure. The results demonstrate that SOA that aged in the absence of NOx contained more ROS than fresh SOA and were more toxic toward the cells, while varying NOx conditions had no significant influence on levels of the ROS content in fresh SOA and their toxicity. Analysis of ROS in the exposed cells using flow cytometry showed a similar trend with the total ROS content in the SOA. This study provides a first and direct observation of such association.
Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immune system, their underlying mechanism, and the components responsible for the adverse health effects have not been yet completely elucidated. In this study, ambient fine and coarse particles were collected at three different locations in Japan by cyclone technique. Both particles collected at all locations decreased the viability of nasal epithelial cells and antigen presenting cells (APCs), increased the production of IL-6, IL-8, and IL-1β from bronchial epithelial cells and APCs, and induced expression of dendritic and epithelial cell (DEC) 205 on APCs. Differences in inflammatory responses, but not in cytotoxicity, were shown between both particles, and among three locations. Some components such as Ti, Co, Zn, Pb, As, OC (organic carbon) and EC (elemental carbon) showed significant correlations to inflammatory responses or cytotoxicity. These results suggest that ambient fine and coarse particles differently affect nasal and bronchial epithelial cells and immune response, which may depend on particles size diameter, chemical composition and source related particles types.
Particulate matter with diameters <2.5 μm (i.e., PM) has multiple natural and anthropological sources. The association between PM and the exacerbation of respiratory allergy and asthma has been well studied, but the components of PM that are responsible for allergies have not yet been determined. Here, we elucidated the effects of aqueous and organic extract of PM collected during four seasons in November 2014-December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM was collected by high-volume air samplers and extracted into water soluble and lipid soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to PM extracts. We measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-soluble or organic extracts in airway epithelial cells, but they caused almost no pro-inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, summer, and spring from Fukuoka significantly increased proliferation of splenocytes. Organic extract of spring and summer from Kawasaki significantly elevated the TCR expression, and organic extract of summer from Kawasaki decreased the CD19 expression. These results suggest that PM extract samples are responsible for cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can contribute to the exacerbation of respiratory diseases such as asthma. These effects can differ by PM components, collection areas and seasons.
Particulate matter with aerodynamic diameter ≤2.5 μm (PM ) is generally composed of carbon nuclei associated with various organic carbons, metals, ions and biological materials. Among these components, polyaromatic hydrocarbons (PAHs) such as benzo(a)pyrene (BaP) and quinones have detrimental effects on airway epithelial cells and immunodisrupting effects, which leads to the exacerbation of respiratory allergies. The effects of PAHs and the carbon nuclei, separately as well as in combination, remain to be established. We investigated the effects of BaP, 9,10-phenanthroquinone (9,10-PQ), and 1,2-napthoquinone (1,2-NQ) and their combined effects with heated diesel exhaust particle (H-DEP) as carbon nuclei of typical PM . We exposed human airway epithelial cells (BEAS-2B), murine bone marrow-derived antigen-presenting cells (APCs), and murine splenocytes to BaP, 9,10-PQ, or 1,2-NQ in the presence and absence of H-DEP. Several important inflammatory cytokines and cell surface molecules were measured. PAHs alone did not have apparent cytotoxic effects on BEAS-2B, whereas combined exposure with H-DEP induced noticeable detrimental effects which mainly reflected the action of H-DEP itself. BaP increased CD86 expression as an APC surface molecule regardless of the presence or absence of H-DEP. None of the BaP, 9,10-PQ, or 1,2-NQ exposure alone or their combined exposure with H-DEP resulted in any significant activation of splenocytes. These results suggest that PAHs and carbon nuclei show additive effects, and that BaP with the carbon nuclei may contribute to exacerbations of allergic respiratory diseases including asthma by PM , especially via antigen-presenting cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.