The recent diphoton excess signal at an invariant mass of 750 GeV can be interpreted in the framework of left-right symmetric models with additional scalar singlets and vector-like fermions. We propose a minimal scenario for such a purpose. Extending the LRSM framework to include these new vector-like fermionic fields, on the other hand, results in interesting phenomenological implications for the LRSM fermion masses and mixing. Furthermore, existence of such vector-like fermions can also have interesting implications for baryogenesis and the dark matter sector. The introduction of a real bi-triplet scalar which contains a potential DM candidate will allow the gauge couplings to unify at ≈ 10 17.
We present a detailed discussion on neutrinoless double beta decay within a class of left-right symmetric models where neutrino mass originates by natural type-II seesaw dominance. The spontaneous symmetry breaking is implemented with doublets, triplets and bidoublet scalars. The fermion sector is extended with an extra sterile neutrino per generation that helps in implementing the seesaw mechanism. The presence of extra particles in the model exactly cancels type-I seesaw and allows large value for Dirac neutrino mass matrix M D . The key feature of this work is that all the physical masses and mixing are expressed in terms of neutrino oscillation parameters and lightest neutrino mass thereby facilitating to constrain light neutrino masses from 0νββ decay. With this large value of M D new contributions arise due to; i) purely left-handed current via exchange of heavy righthanded neutrinos as well as sterile neutrinos, ii) the so called λ and η diagrams. New physics contributions also arise from right-handed currents with right-handed gauge boson W R mass around 3 TeV. From the numerical study, we find that the new contributions to 0νββ decay not only saturate the current experimental bound but also give lower limit on absolute scale of lightest neutrino mass and favor NH pattern of light neutrino mass hierarchy.
We discuss a class of left-right symmetric theories with a universal seesaw mechanism for fermion masses and mixing and the implications for neutrinoless double beta (0νββ) decay where neutrino masses are governed by natural type-II seesaw dominance. The scalar sector consists of left-and right-handed Higgs doublets and triplets, while the conventional Higgs bidoublet is absent in this scenario. We use the Higgs doublets to implement the left-right and the electroweak symmetry breaking. On the other hand, the Higgs triplets with induced vacuum expectation values can give Majorana masses to light and heavy neutrinos and mediate 0νββ decay. In the absence of the Dirac mass terms for the neutrinos, this framework can naturally realize type-II seesaw dominance even if the right-handed neutrinos have masses of a few TeV. We study the implications of this framework in the context of 0νββ decay.
In this review, we present several variants of left-right symmetric models in the context of neutrino masses and leptogenesis. In particular, we discuss various low scale seesaw mechanisms like linear seesaw, inverse seesaw, extended seesaw and their implications to lepton number violating process like neutrinoless double beta decay. We also visit an alternative framework of left-right models with the inclusion of vector-like fermions to analyze the aspects of universal seesaw. The symmetry breaking of left-right symmetric model around few TeV scale predicts the existence of massive right-handed gauge bosons W R and Z R which might be detected at the LHC in near future. If such signals are detected at the LHC that can have severe implications for leptogenesis, a mechanism to explain the observed baryon asymmetry of the Universe. We review the implications of TeV scale left-right symmetry breaking for leptogenesis.
We consider a gauged $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ extension of the left-right symmetric theory in order to simultaneously explain neutrino mass, mixing and the muon anomalous magnetic moment. We get sizeable contribution from the interaction of the new light gauge boson Zμτ of the $$ \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$ U 1 L μ − L τ symmetry with muons which can individually satisfy the current bounds on muon (g − 2) anomaly (∆aμ). The other positive contributions to ∆aμ come from the interactions of singly charged gauge bosons WL, WR with heavy neutral fermions and that of neutral CP-even scalars with muons. The interaction of WL with heavy neutrino is facilitated by inverse seesaw mechanism which allows large light-heavy neutrino mixing and explains neutrino mass in our model. CP-even scalars with mass around few hundreds GeV can also satisfy the entire current muon anomaly bound. The results show that the model gives a small but non-negligible contribution to ∆aμ thereby eliminating the entire deviation in theoretical prediction and experimental result of muon (g − 2) anomaly. We have briefly presented a comparative study for symmetric and asymmetric left-right symmetric model in context of various contribution to ∆aμ. We also discuss how the generation of neutrino mass is affected when left-right symmetry breaks down to Standard Model symmetry via various choices of scalars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.