BackgroundPlasmodium falciparum encoded histidine rich protein (HRP2) based malaria rapid diagnostic tests (RDTs) are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions.MethodsThis is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR.ResultsAmong 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521) and 1.8% (27/1521) of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0–25% (2.4, 95% CI; 1.6–3.3). The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0–8% (1.6, 95% CI; 1.0–2.4).ConclusionThis study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs.
RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (∼61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (∼59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this region.
The antifolate drugs sulfadoxine and pyrimethamine are commonly used to treat Plasmodium falciparum malaria. However, they can also affect the Plasmodium vivax parasite if it coexists with P. falciparum, as both species have common drug targets. Resistance to the antifolate drugs arises due to point mutations in the target enzymes of the respective parasite. To assess the cross-species impact of antifolate drug treatment, we describe here the dihydrofolate reductase (DHFR) mutations among field isolates of P. vivax and P. falciparum. The overall DHFR mutation rate for P. vivax was lower than that for P. falciparum. However, both species of Plasmodium followed similar trends of DHFR mutations. Similar to P. falciparum, the DHFR mutation rate of P. vivax also varied from region to region. It was lower in P. vivax-dominant regions but higher in the P. falciparum-dominated areas and highest where antifolates are used as the first line of antimalarial treatment. In conclusion, the antifolate treatment of falciparum malaria is proportionately affecting the DHFR mutations of P. vivax, suggesting that the drug should be used with caution to minimize the development of cross-species resistance in the field.
RealAmp was comparable to PCR in detecting malaria parasites and shows promise as a tool to detect submicroscopic infections in malaria control and elimination programs worldwide.
BackgroundMalaria presents a diagnostic challenge in most tropical countries. Microscopy remains the gold standard for diagnosing malaria infections in clinical practice and research. However, microscopy is labour intensive, requires significant skills and time, which causes therapeutic delays. The objective of obtaining result quickly from the examination of blood samples from patients with suspected malaria is now made possible with the introduction of rapid malaria diagnostic tests (RDTs). Several RDTs are available, which are fast, reliable and simple to use and can detect Plasmodium falciparum and non-falciparum infections or both. A study was conducted in tribal areas of central India to measure the overall performance of several RDTs for diagnosis of P. falciparum and non-falciparum infections in comparison with traditional and molecular techniques. Such data will be used to guide procurement decisions of policy makers and programme managers.MethodsFive commercially available RDTs were tested simultaneously in field in parallel with peripheral blood smears in outbreak-affected areas. The evaluation is designed to provide comparative data on the performance of each RDT. In addition, molecular method i.e. polymerase chain reaction (PCR) was also carried out to compare all three methods.ResultsA total of 372 patients with a clinical suspicion of malaria from Bajag Primary Health Centre (PHC) of district Dindori and Satanwada PHC of district Shivpuri attending the field clinics of Regional Medical Research Centre were included in the study. The analysis revealed that the First Response Malaria Antigen pLDH/HRP2 combo test was 94.7% sensitive (95% CI 89.5-97.7) and 69.9% specific (95% CI 63.6-75.6) for P. falciparum. However, for non-falciparum infections (Plasmodium vivax) the test was 84.2% sensitive (95% CI 72.1-92.5) and 96.5% specific (95% CI 93.8-98.2). The Parascreen represented a good alternative. All other RDTs were relatively less sensitive for both P. falciparum and non-falciparum infections.ConclusionsThe results in this study show comparative performance between microscopy, various RDTs and PCR. Despite some inherent limitation in the five RDTs tested, First Response clearly has an advantage over other RDTs. The results suggest that RDTs could play and will play an important role in malaria diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.