The adhesive properties, as measured by bulk tack analysis, are found to decrease in blends of isomerically pure Sc3N@Ih-C80 metallic nitride fullerene (MNF) and polystyrene-block-polyisoprene-block-polystyrene (SIS) copolymer pressure sensitive adhesive (PSA) under white light irradiation in air. Reduction of tack is attributed to the in-situ generation of 1O2 and subsequent photooxidative crosslinking of the adhesive film. Comparisons are drawn to classical fullerenes C60 and C70 for this process. This work represents the first demonstration of 1O2 generating ability in the general class of metallic nitride fullerenes, (M3N@C80). Additional support is provided for the sensitizing ability of Sc3N@Ih-C80 through the successful photooxygenation of 2-methyl-2-butene to its allylic hydroperoxides in benzene-d6 under irradiation at 420 nm, a process which occurs at a comparable rate to C60. Photooxygenation of 2-methyl-2-butene is found to be influenced by the fullerene sensitizer concentration and oxygen gas flow rate. Molar extinction coefficients are reported for Sc3N@Ih-C80 at 420 nm and 536 nm. Evaluation of the potential antimicrobial activity of films prepared in this study stemming from the in-situ generation of 1O2 led to an observed 1 log kill for select Gram-positive and Gram-negative bacteria.
The yield of Sc3N@C80 metallofullerene and fullerene extract is dramatically increased via filling cored graphite rods with copper and Sc2O3 only; when compared to 100% Sc2O3 packed rods, improvements of factors of approximately 3 and approximately 5 have been achieved for Sc3N@C80 and fullerene extract produced, respectively, with the weight percent of Cu added to the rod affecting the type and amount of fullerene produced.
A delay in the onset of flocculation is observed for asphaltenes in the presence of several naphthenic acids: methyl abietate, hydrogenated methyl abietate, 5β-cholanic acid, and 5β-cholanic acid-3-one. This flocculation behavior is monitored as a function of the added precipitant (n-heptane) to solutions of suspended asphaltenes and naphthenic acids in model solutions of toluene/n-heptane, using a combination of dynamic light scattering (DLS) and near-infrared (NIR) spectroscopic techniques. DLS and NIR show very good correlation in indentifying the onsets of flocculation, which varied among the series of naphthenic acids. Specific interaction energies and equilibrium intermolecular distances of asphaltenes and naphthenic acids are calculated using molecular mechanics. The results from molecular mechanics calculations support the experimental results of the titrations, and structure−property relationships are defined. Structure−property relationships are established for naphthenic acids, defining the relative contributions and importance of various functional groups: CC, CO, COOR, and COOH. The additive effects of naphthenic acids, defined by an increase in the precipitation onset, increase in the order of 5β-cholanic acid-3-one < hydrogenated methyl abietate < methyl abietate < 5β-cholanic acid, with experiments containing 5β-cholanic acid-3-one containing unexpected and interesting results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.