The accumulation of di-carbonyl compounds, methylglyoxal (MG) and glyoxal (G) has been observed in diabetic conditions. They are formed from non-oxidative mechanisms in anaerobic glycolysis and lipid peroxidation and act as advanced glycation endproduct (AGE) precursors. The objective of this study was to monitor and characterize the AGE formation of human immunoglobulin G (hIgG) by MG and G, utilizing UV-Fluorescence spectroscopy, circular dichroism (CD) and MALDI-Mass Spectrometry. Human IgG was incubated over time with MG and G at different concentrations. Formation of AGE was monitored by UV and fluorescence spectroscopy. The effect of AGE formation on secondary structure of hIgG has been studied by CD. Comparison of AGE profile for MG and G was performed by MALDI-Mass Spectrometry. Both MG and G formed AGE with MG being almost twice as reactive as G. The combination of these techniques is a convenient method for evaluating and characterizing the AGE proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.