The highly enantioselective arylacetonitrilase of Pseudomonas putida was purified to homogeneity using a combination of (NH4)2SO4 fractionation and different chromatographic techniques. The enzyme has a molecular weight of 412 kDa and consisted of approximately nine to ten identical subunits (43 kDa). The purified enzyme exhibited a pH optimum of 7.0 and temperature optimum of 40 degrees C. The nitrilase was highly susceptible to thiol-specific reagents and metal ions and also required a reducing environment for its activity. These reflected the presence of a catalytically essential thiol group for enzyme activity which is in accordance with the proposed mechanism for nitrilase-catalyzed reaction. The enzyme was highly specific for arylacetonitriles with phenylacetonitrile and its derivatives being the most preferred substrates. Higher specificity constant (kcat/K(m)) values for phenylacetonitrile compared to mandelonitrile also revealed the same. Faster reaction rate achieved with this nitrilase for mandelonitrile hydrolysis was possibly due to the low activation energy required by the protein. Incorporation of low concentration (<5%) of organic solvent increased the enzyme activity by increasing the availability of the substrate. Higher stability of the enzyme at slightly alkaline pH and ambient temperature provides an excellent opportunity to establish a dynamic kinetic resolution process for the production of (R)-(-)-mandelic acid from readily available mandelonitrile.
(R)-mandelic acid was produced from racemic mandelonitrile using free and immobilized cells of Pseudomonas putida MTCC 5110 harbouring a stereoselective nitrilase. In addition to the optimization of culture conditions and medium components, an inducer feeding approach is suggested to achieve enhanced enzyme production and therefore higher degree of conversion of mandelonitrile. The relationship between cell growth periodicity and enzyme accumulation was also studied, and the addition of the inducer was delayed by 6 h to achieve maximum nitrilase activity. The nitrilase expression was also authenticated by the sodium dodecyl phosphate-polyacrylamide gel electrophoresis analysis. P. putida MTCC 5110 cells were further immobilized in calcium alginate, and the immobilized biocatalyst preparation was used for the enantioselective hydrolysis of mandelonitrile. The immobilized system was characterized based on the Thiele modulus (phi). Efficient biocatalyst recycling was achieved as a result of immobilization with immobilized cells exhibiting 88% conversion even after 20 batch recycles. Finally, a fed batch reaction was set up on a preparative scale to produce 1.95 g of (R)-(-)-mandelic acid with an enantiomeric excess of 98.8%.
The present work attempts to deal with the stability and reusability aspect of nitrilase from Alcaligenes faecalis for the production of (R)-(-)-mandelic acid. Four entrapment matrixes were screened to search for a suitable support, and alginate was found to have significant process advantages over its other counterparts. Thermodynamic analysis allowed us to account for decreased enantioselectivity (E) as a result of immobilization. The system was also characterized based on the Thiele modulus (phi). Efficient reusability of the biocatalyst up to 35 batches was achieved by immobilization as compared to 9 batches for free cells, and cross-linking extended it further to 40 batches. Finally, synthetic utility of the immobilized biocatalyst was demonstrated on a preparative scale to produce 640 g of (R)-(-)-mandelic acid with 97% enantiomeric excess (ee).
SummaryDevelopments in biocatalysis have been largely fuelled by consumer demands for new products, industrial attempts to improving existing process and minimizing waste, coupled with governmental measures to regulate consumer safety along with scientific advancements. One of the major hurdles to application of biocatalysis to chemical synthesis is unavailability of the desired enzyme to catalyse the reaction to allow for a viable process development. Even when the desired enzyme is available it often forces the process engineers to alter process parameters due to inadequacies of the enzyme, such as instability, inhibition, low yield or selectivity, etc. Developments in the field of enzyme or reaction engineering have allowed access to means to achieve the ends, such as directed evolution, de novo protein design, use of non‐conventional media, using new substrates for old enzymes, active‐site imprinting, altering temperature, etc. Utilization of enzyme discovery and improvement tools therefore provides a feasible means to overcome this problem. Judicious employment of these tools has resulted in significant advancements that have leveraged the research from laboratory to market thus impacting economic growth; however, there are further opportunities that have not yet been explored. The present review attempts to highlight some of these achievements and potential opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.