The loss of insulin-producing β-cells
is the central pathological
event in type 1 and 2 diabetes, which has led to efforts to identify
molecules to promote β-cell proliferation, protection, and imaging.
However, the lack of β-cell specificity of these molecules jeopardizes
their therapeutic potential. A general platform for selective release
of small-molecule cargoes in β-cells over other islet cells ex vivo or other cell-types in an organismal context will
be immensely valuable in advancing diabetes research and therapeutic
development. Here, we leverage the unusually high Zn(II) concentration
in β-cells to develop a Zn(II)-based prodrug system to selectively
and tracelessly deliver bioactive small molecules and fluorophores
to β-cells. The Zn(II)-targeting mechanism enriches the inactive
cargo in β-cells as compared to other pancreatic cells; importantly,
Zn(II)-mediated hydrolysis triggers cargo activation. This prodrug
system, with modular components that allow for fine-tuning selectivity,
should enable the safer and more effective targeting of β-cells.
The selective modulation of ABC efflux pumps overexpressed in multidrug resistant cancers (MDR) and attendant resensitization to chemotherapeutic agents represents a promising strategy for treating cancer. We have synthesized four novel pentacyclic Strychnos alkaloids alstolucines B (2), F (3), A (5), and N-demethylalstogucine (4), in addition to known Strychnos alkaloid echitamidine (16), and evaluated compounds 1–3, 5 in biochemical assays with ABCC10 and P-gp. Alstolucines B (2) and F (3) inhibited ABCC10 ATPase activity at 12.5 μM without affecting P-gp function; moreover, they resensitized ABCC10-transfected cell lines to paclitaxel at 10 μM. Altogether, the alstolucines represent promising lead candidates in the development of modulators of ABCC10 for MDR cancers overexpressing this pump.
Proteolysis Targeting Chimeras (PROTACs), a class of heterobifunctional molecules that recruit target proteins to E3 ligases, have gained traction for targeted protein degradation. However, pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other targets, such as zinc-finger (ZF) proteins, that hold key functions in normal development and disease progression. This off-target degradation of pomalidomide-based PROTACs raises concerns about their therapeutic applicability and long-term side effects. Therefore, there is a crucial need to develop rules for PROTAC design that minimize off-target degradation. In this study, we developed a high-throughput platform that interrogates the off-target degradation of ZF domains and discovered, using this platform, that PROTACs with the current design paradigm induce significant degradation of several ZF proteins. To identify new rules for PROTAC design, we generated a rationalized library of pomalidomide analogs with distinct exit vector modifications on the C4 and C5 positions of the phthalimide ring and profiled their propensities for ZF protein degradation. We found that modifications on the C5 position with nucleophilic aromatic substitution (SNAr) reduce off-target ZF degradation. We applied our newfound design principles on a previously developed ALK oncoprotein-targeting PROTAC and generated PROTACs with enhanced potency and minimal off-target degradation. We envision the reported off-target profiling platform and pomalidomide analogs will find utility in design of specific PROTACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.