BackgroundBile salt hydrolase plays an important role in bile acid-mediated signaling pathways, which regulate lipid absorption, glucose metabolism, and energy homeostasis. Several reports suggest that changes in the composition of bile acids are found in many diseases caused by dysbacteriosis.ResultsHere, we present the taxonomic identification of bile salt hydrolase (BSH) in human microbiota and elucidate the abundance and activity differences of various bacterial BSH among 11 different populations from six continents. For the first time, we revealed that bile salt hydrolase protein sequences (BSHs) are distributed in 591 intestinal bacterial strains within 117 genera in human microbiota, and 27.52% of these bacterial strains containing BSH paralogs. Significant variations are observed in BSH distribution patterns among different populations. Based on phylogenetic analysis, we reclassified these BSHs into eight phylotypes and investigated the abundance patterns of these phylotypes among different populations. From the inspection of enzyme activity among different BSH phylotypes, BSH-T3 showed the highest enzyme activity and is only found in Lactobaclillus. The phylotypes of BSH-T5 and BSH-T6 mainly from Bacteroides with high percentage of paralogs exhibit different enzyme activity and deconjugation activity. Furthermore, we found that there were significant differences between healthy individuals and patients with atherosclerosis and diabetes in some phylotypes of BSHs though the correlations were pleiotropic.ConclusionThis study revealed the taxonomic and abundance profiling of BSH in human gut microbiome and provided a phylogenetic-based system to assess BSHs activity by classifying the target sequence into specific phylotype. Furthermore, the present work disclosed the variation patterns of BSHs among different populations of geographical regions and health/disease cohorts, which is essential to understand the role of BSH in the development and progression of related diseases.Electronic supplementary materialThe online version of this article (10.1186/s40168-019-0628-3) contains supplementary material, which is available to authorized users.
Recent evidence has established that consumption of High-fat diet (HFD)-induced obesity is associated with deficits in hippocampus-dependent memory/learning and mood states. Nevertheless the link between obesity and emotional disorders still remains to be elucidated. This issue is of particular interest during adolescence, which is important period for shaping learning/memory and mood regulation that can be sensitive to the detrimental effects of HFD. Our present study is focused to investigate behavioral and metabolic influences of short-term HFD intake in adolescent C57BL/6 mice. HFD caused weight gain, impaired glucose tolerance (IGT) and depression-like behavior as early as after 3 weeks which was clearly proved by a decrease in number of groomings in the open field test (OFT) and an increase in immobility time in the tail suspension test (TST). In the 4th week HFD induced obese model was fully developed and above behavioral symptoms were more dominant (decrease in number of crossings and groomings and increase in immobility time in both FST and TST). At the end of 6th week hippocampal analysis revealed the differences in morphology (reduced Nissl positive neurons and decreased the 5-HT receptor expression), neuronal survival (increased cleaved caspase-3 expression), synaptic plasticity (down regulation of p-CREB and BDNF), and inflammatory responses (increase in expression of pro-inflammatory cytokines and decrease in expression of anti-inflammatory cyokines) in HFD mice. Our results demonstrate that, high-fat feeding of adolescent mice could provoke "depression-like" behavior as early as 3 weeks and modulate structure, neuron survival and neuroinflammation in hippocampus as early as 6 weeks proving that adolescent age is much prone to adverse effects of HFD, which causes obesity, behavioral differences, memory and learning deficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.