International audienceWe report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200-400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrate
International audienceUltrashort laser pulses can modify the inner structure of fused silica, generating refractive index changes varying from soft positive (type I) light guiding forms to negative (type II) values with void presence and anisotropic sub-wavelength modulation. We investigate electronic and structural material changes in the type I to type II transition via coherent and incoherent secondary light emission reflecting free carrier behavior and post-irradiation material relaxation in the index change patterns. Using phase contrast microscopy, photoluminescence, and Raman spectroscopy, we determine in a space-resolved manner defect formation, redistribution and spatial segregation, and glass network reorganization paths in conditions marking the changeover between type I and type II photoinscription regimes. We first show characteristic patterns of second harmonic generation in type I and type II traces, indicating the collective involvement of free carriers and polarization memory. Second, incoherent photoemission from resonantly and non-resonantly excited defect states reveals accumulation of non-bridging oxygen hole centers (NBOHCs) in positive index domains and oxygen deficiency centers (ODCs) with O 2 ions segregation in voidlike regions and in the nanostructured domains, reflecting the interaction strength. Complementary Raman investigations put into evidence signatures of the different environments where photochemical densification (bond rearrangements) and mechanical effects can be indicated. NBOHCs setting in before visible index changes serve as precursors for subsequent compaction build-up, indicating a scenario of cold, defect-assisted densification for the soft type I irradiation regime. Additionally, we observe hydrodynamic effects and severe bond-breaking in type II zones with indications of phase transition. These observations illuminate densification paths in fused silica in low power irradiation regimes, and equally in energetic ranges, characterized by the onset of thermo-mechanical effects
International audienceThumbnail image of graphical abstractNondiffractive ultrafast optical beams with quasi-stationary characteristics enable new regimes and scales in light-matter interactions. We discuss the action of ultrashort Bessel laser beams in bulk fused silica, emphasizing excitation dynamics with energy localization beyond diffraction limit. We shed light on relaxation channels leading to one-dimensional structures with nanoscale sections and morphologies ranging from densified matter to nanosized cavities. Space- and time-resolved absorption and phase-contrast microscopy reveals two main carrier relaxation paths. Fast exciton trapping in self-induced matrix deformations results in positive index contrast driven by swift accumulation of non-bridging oxygen hole centers and defect-driven structural rearrangements. High excitation densities determine thermomechanical paths, with onset of phase transitions and the release of pressure waves. High-aspect-ratio nanosized channels are thus created via rarefaction and liquid cavitation, accompanied by molecular decomposition and generation of oxygen deficiency. The characteristic electronic relaxation identifies the nature of structural transitions up to the onset of phase transformation. Temporal pulse dispersion regulation allows driving unique carrier dynamics with precise control over energy deposition down to the 100 nm scale. Extreme high-aspect-ratio uniform void structures can thus be fabricated in conditions of sub-micron transverse light confinemen
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.