Quinone methides and related electrophiles represent a common class of intermediates that form during metabolism of drugs and xenobiotics and may lead to DNA alkylation. The intrinsic reactivity of these species has now been characterized using a stable model compound, O-(tert-butyldimethylsilyl)-2-bromomethylphenol, designed to generate an o-quinone methide in the presence of fluoride. The resulting deoxynucleoside adducts were assigned unambiguously through use of two-dimensional NMR and, in particular, heteronuclear multiple-bond connectivity (HMBC). Both purines, dG and dA, reacted at their exo-amino groups. In contrast, dC had previously been shown to react at its cyclic N3 position [Rokita, S. E.; Yang, J.; Pande, P.; Greenberg, W. A. J. Org. Chem. 1997, 62, 3010−3012], and the relatively nonnucleophilic T remained inert under all conditions examined. Surprisingly, the efficiency of cytosine modification exceeded that of adenine and guanine by more than 10-fold in competition studies with the deoxymononucleosides. Reaction of all residues was suppressed in duplex DNA, but none was affected more than cytosine (>3600-fold). Guanine consequently emerged as the predominant target in duplex DNA in accord with the selectivity of most natural products forming quinone methide-like species. These general observations may then in part reflect the ability of the exo-amino group of guanine to maintain its reactivity most effectively from nucleoside to helical DNA.
A 9-aminoacridine conjugate of a silyl-protected bis(acetoxymethyl)phenol (bisQMP) was synthesized and evaluated as an inducible cross-linking agent of DNA to test our ability to harness the chemistry of reactive quinone methide intermediates (QM). The acridine component was chosen for its ability to delivery an appendage to the major groove of DNA, and the silyl-protected component was chosen for its ability to generate two quinone methide equivalents in tandem upon addition of fluoride. This design created competition between reaction of (1) the 2-amino group of guanine that reacts irreversibly to form a stable QM adduct and (2) the more nucleophilic N7 group of guanine that reacts more efficiently but reversibly to form a labile QM adduct. This lability was apparently compensated by co-localization of the N7 group and QM in the major groove since the N7 adduct appeared to dominate the profile of products formed by duplex DNA. The controlling influence of acridine was also expressed in the sensitivity of the conjugate to ionic strength. High salt concentration inhibited covalent reaction just as it inhibits intercalation of the cationic acridine. As expected for QM formation, the presence of fluoride was indeed necessary for initiating reaction, and no direct benzylic substitution was observed. The conjugate also cross-linked DNA with high efficiency, forming one cross-link for every four alkylation events. Both alkylation and cross-linking products formed by duplex DNA were labile to hot piperidine treatment which led to approximately 40% strand scission and approximately 50% reversion to a material with an electrophoretic mobility equivalent to the parent DNA. All guanines exhibited at least some reactivity including those which were recalcitrant to cross-linking by an oligonucleotide-bisQMP conjugate designed for triplex formation [Zhou, G.; Pande, P.; Johnson, A. E.; Rokita, S. E. Bioorg. Med. Chem. 2001, 9, 2347-2354].
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.