We introduce the first algorithm that we are aware of to employ Bloom filters for Longest Prefix Matching (LPM). The algorithm performs parallel queries on Bloom filters, an efficient data structure for membership queries, in order to determine address prefix membership in sets of prefixes sorted by prefix length. We show that use of this algorithm for Internet Protocol (IP) routing lookups results in a search engine providing better performance and scalability than TCAM-based approaches. The key feature of our technique is that the performance, as determined by the number of dependent memory accesses per lookup, can be held constant for longer address lengths or additional unique address prefix lengths in the forwarding table given that memory resources scale linearly with the number of prefixes in the forwarding table. Our approach is equally attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addresses, four times longer than IPv4. We present a basic version of our approach along with optimizations leveraging previous advances in LPM algorithms. We also report results of performance simulations of our system using snapshots of IPv4 BGP tables and extend the results to IPv6. Using less than 2Mb of embedded RAM and a commodity SRAM device, our technique achieves average performance of one hash probe per lookup and a worst case of two hash probes and one array access per lookup.
We introduce the first algorithm that we are aware of to employ Bloom filters for Longest Prefix Matching (LPM). The algorithm performs parallel queries on Bloom filters, an efficient data structure for membership queries, in order to determine address prefix membership in sets of prefixes sorted by prefix length. We show that use of this algorithm for Internet Protocol (IP) routing lookups results in a search engine providing better performance and scalability than TCAM-based approaches. The key feature of our technique is that the performance, as determined by the number of dependent memory accesses per lookup, can be held constant for longer address lengths or additional unique address prefix lengths in the forwarding table given that memory resources scale linearly with the number of prefixes in the forwarding table. Our approach is equally attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addresses, four times longer than IPv4. We present a basic version of our approach along with optimizations leveraging previous advances in LPM algorithms. We also report results of performance simulations of our system using snapshots of IPv4 BGP tables and extend the results to IPv6. Using less than 2Mb of embedded RAM and a commodity SRAM device, our technique achieves average performance of one hash probe per lookup and a worst case of two hash probes and one array access per lookup.
We present a novel method for automatically geo-tagging photographs of man-made environments via detection and matching of repeated patterns. Highly repetitive environments introduce numerous correspondence ambiguities and are problematic for traditional wide-baseline matching methods. Our method exploits the highly repetitive nature of urban environments, detecting multiple perspectively distorted periodic 2D patterns in an image and matching them to a 3D database of textured facades by reasoning about the underlying canonical forms of each pattern. Multiple 2D-to-3D pattern correspondences enable robust recovery of camera orientation and location. We demonstrate the success of this method in a large urban environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.