New technologies rely on the development of new materials, and these may simply be the innovative combination of known components. The structural combination of a polymer hydrogel network with a nanoparticle (metals, non‐metals, metal oxides, and polymeric moieties) holds the promise of providing superior functionality to the composite material with applications in diverse fields, including catalysis, electronics, bio‐sensing, drug delivery, nano‐medicine, and environmental remediation. This mixing may result in a synergistic property enhancement of each component: for example, the mechanical strength of the hydrogel and concomitantly decrease aggregation of the nanoparticles. These mutual benefits and the associated potential applications have seen a surge of interest in the past decade from multi‐disciplinary research groups. Recent advances in nanoparticle–hydrogel composites are herein reviewed with a focus on their synthesis, design, potential applications, and the inherent challenges accompanying these exciting materials.
We demonstrate template-guided self-assembly of gold nanoparticles into ordered arrays of uniform clusters suitable for high-performance SERS on both flat (silicon or glass) chips and an optical fiber faucet. Cluster formation is driven by electrostatic self-assembly of anionic citrate-stabilized gold nanoparticles (~11.6 nm diameter) onto two-dimensionally ordered polyelectrolyte templates realized by self-assembly of polystyrene-block-poly(2-vinylpyridine). A systematic variation is demonstrated for the number of particles (N ≈ 5, 8, 13, or 18) per cluster as well as intercluster separations (S(c) ≈ 37-10 nm). Minimum interparticle separations of <5 nm, intercluster separations of ~10 nm, and nanoparticle densities on surfaces as high as ~7 × 10(11)/in.(2) are demonstrated. Geometric modeling is used to support experimental data toward estimation of interparticle and intercluster separations in cluster arrays. Optical modeling and simulations using the finite difference time domain method are used to establish the influence of cluster size, shape, and intercluster separations on the optical properties of the cluster arrays in relation to their SERS performance. Excellent SERS performance, as evidenced by a high enhancement factor, >10(8) on flat chips and >10(7) for remote sensing, using SERS-enabled optical fibers is demonstrated. The best performing cluster arrays in both cases are achievable without the use of any expensive equipment or clean room processing. The demonstrated approach paves the way to significantly low-cost and high-throughput production of sensor chips or 3D-configured surfaces for remote sensing applications.
Supported rhodium and iridium 2,2′-bipyridine complexes were prepared for the hydrogenation of aromatic ketones under hydrogen pressure. The key feature of the immobilization process is the functionalization of the 2,2′-bipyridine unit with two phosphonic acid moieties, thus allowing the covalent grafting of the catalytic complex onto in situ generated titanium oxide particles. A very good catalytic activity is observed with the resulting materials that compares well with the homogeneous parent system and gives evidence that the major part of the catalytic sites are readily accessible. Moreover, the catalyst can be reused, and no significant rhodium leaching is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.