Urinary tract infections are the second most common infectious disease in humans and are predominantly caused by uropathogenic E. coli (UPEC). A majority of UPEC isolates express the type 1 pilus adhesin, FimH, and cell culture and murine studies demonstrate that FimH is involved in invasion and apoptosis of urothelial cells. FimH initiates bladder pathology by binding to the uroplakin receptor complex, but the subsequent events mediating pathogenesis have not been fully characterized. We report a hitherto undiscovered signaling role for the UPIIIa protein, the only major uroplakin with a potential cytoplasmic signaling domain, in bacterial invasion and apoptosis. In response to FimH adhesin binding, the UPIIIa cytoplasmic tail undergoes phosphorylation on a specific threonine residue by casein kinase II, followed by an elevation of intracellular calcium. Pharmacological inhibition of these signaling events abrogates bacterial invasion and urothelial apoptosis in vitro and in vivo. Our studies suggest that bacteria-induced UPIIIa signaling is a critical mediator of bladder responses to insult by uropathogenic E. coli.
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a debilitating syndrome of unknown etiology often postulated, but not proven, to be associated with microbial infection of the prostate gland. We hypothesized that infection of the prostate by clinically relevant uropathogenic Escherichia coli (UPEC) can initiate and establish chronic pain. We utilized an E. coli strain newly isolated from a patient with CP/CPPS (strain CP1) and examined its molecular pathogenesis in cell culture and in a murine model of bacterial prostatitis. We found that CP1 is an atypical isolate distinct from most UPEC in its phylotype and virulence factor profile. CP1 adhered to, invaded, and proliferated within prostate epithelia and colonized the prostate and bladder of NOD and C57BL/6J mice. Using behavioral measures of pelvic pain, we showed that CP1 induced and sustained chronic pelvic pain in NOD mice, an attribute not exhibited by a clinical cystitis strain. Furthermore, pain was observed to persist even after bacterial clearance from genitourinary tissues. CP1 induced pelvic pain behavior exclusively in NOD mice and not in C57BL/6J mice, despite comparable levels of colonization and inflammation. Microbial infections can thus serve as initiating agents for chronic pelvic pain through mechanisms that are dependent on both the virulence of the bacterial strain and the genetic background of the host.Prostatitis is a common urologic disease that results in over 2 million outpatient visits per year in the United States, including 8% of all visits to urologists and 1% of those to primary care physicians (5). The disease is classified into four categories, including acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), and asymptomatic inflammatory prostatitis.The third disease category, CP/CPPS, accounts for approximately 90% of all chronic prostatitis cases and is clinically manifested as chronic pain in the perineum, rectum, prostate, penis, testicles, and abdomen (5). Despite the predominantly nonbacterial nature of CP/CPPS, up to 8% of patients with CP/CPPS harbor uropathogens that have traditionally been deemed to be of no significance (25). Numerous studies have also identified bacterial DNA in prostate samples from CP/ CPPS patients (9,19,20,22,25). CP/CPPS accompanied by uropathogens is differentiated from chronic bacterial prostatitis by the requirement for clinical symptoms of pelvic pain and the lack of recurrent urinary tract infections (UTIs).It has been suggested that the virulence of major uropathogens such as UPEC is dependent on the expression of multiple virulence factors (10, 15). Phylogenetic analysis suggests that prostatitis-causing uropathogenic Escherichia coli (UPEC) strains largely belong to the B2 phylogenetic group and exhibit a wide variety of virulence traits, including nonhemagglutinin adhesin-siderophore receptor (ihA), type 1 fimbriae (fimH), the salmochelin siderophore receptor (iroN), and outer membrane protease T (ompT) (1,12,...
Urinary tract infections (UTIs) cause patient morbidity and have a substantial economic impact. Half of all women will suffer a UTI at least once, and 25% of these women will have recurrent infections. That 75% of previously infected women do not become reinfected strongly suggests a role for an adaptive immune response. The goal of this study was to characterize the adaptive immune responses to uropathogenic Escherichia coli (UPEC), the predominant uropathogen. A novel murine model of UTI reinfection was developed using the prototypic cystitis UPEC isolate NU14 harboring a plasmid encoding OVA as a unique antigenic marker. Bacterial colonization of the bladder was quantified following one or more infections with NU14-OVA. Animals developed anti-OVA serum IgG and IgM titers after the initial infection and marked up-regulation of activation markers on splenic T cells. We observed a 95% reduction in bacterial colonization upon reinfection, and splenic leukocytes showed Ag-specific proliferation in vitro. Adoptive transfer of splenic T cells or passive transfer of serum from previously infected mice protected naive syngeneic mice from UPEC colonization. These findings support our hypothesis that adaptive immune responses to UPEC protect the bladder from reinfection and form the basis of understanding susceptibility to recurrent UTI in women.
Pain is the hallmark of patients with chronic prostatitis (CP) and chronic pelvic pain syndrome (CPPS). Despite numerous hypotheses, the etiology and pathogenesis remain unknown. To better understand CP/CPPS, we used a murine experimental autoimmune prostatitis model to examine the development, localization, and modulation of pelvic pain. Pelvic pain was detected 5 days after antigen instillation and was sustained beyond 30 days, indicating the development of chronic pain. The pain was attenuated by lidocaine treatment into the prostate, but not into the bladder or the colon, suggesting that pain originated from the prostate. Experimental autoimmune prostatitis histopathology was confined to the prostate with focal periglandular inflammatory infiltrates in the ventral, dorsolateral, and anterior lobes of the mouse prostate. Inflammation and pelvic pain were positively correlated and increased with time. Morphologically, the dorsolateral prostate alone showed significantly increased neuronal fiber distribution, as evidenced by increased protein gene product 9.5 expression. Pelvic pain was attenuated by treatment with the neuromodulator gabapentin, suggesting spinal and/or supraspinal contribution to chronic pain. These results provide the basis for identifying mechanisms that regulate pelvic pain and the testing of therapeutic agents that block pain development in CP/CPPS.
Our study has identified a unique mechanism that describes how components of pathogens common in the urinary system may contribute to the malignant transformation of benign prostate epithelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.