We identified marine fish species most preferred by women at reproductive age in Selangor, Malaysia, mercury concentrations in the fish muscles, factors predicting mercury accumulation and the potential health risk. Nineteen most preferred marine fish species were purchased (n = 175) from selected fisherman's and wholesale market. Length, weight, habitat, feeding habit and trophic level were recognised. Edible muscles were filleted, dried at 80 °C, ground on an agate mortar and digested in Multiwave 3000 using HNO and HO. Total mercury was quantified using VP90 cold vapour system with N carrier gas. Certified reference material DORM-4 was used to validate the results. Fish species were classified as demersal (7) and pelagic (12) or predators (11), zoo benthos (6) and planktivorous (2). Length, weight and trophic level ranged from 10.5 to 75.0 cm, 0.01 to 2.50 kg and 2.5 to 4.5, respectively. Geometric mean of total mercury ranged from 0.21 to 0.50 mg/kg; maximum in golden snapper (0.90 mg/kg). Only 9 % of the samples exceeded the JECFA recommendation. Multiple linear regression found demersal, high trophic (≥4.0) and heavier fishes to accumulate more mercury in muscles (R = 27.3 %), controlling for all other factors. About 47 % of the fish samples contributed to mercury intake above the provisional tolerable level (45 μg/day). While only a small portion exceeded the JECFA fish Hg guideline, the concentration reported may be alarming for heavy consumers. Attention should be given in risk management to avoid demersal and high trophic fish, predominantly heavier ones.
PurposeMalaysians are the highest seafood consumers in the region; be it fresh or processed. Environmental pollution has put the safety of seafood at stake, heavy metals among others. This study was done to assess the health risk associated with selected heavy metals ingestion from processed seafood.Design/methodology/approachThe most preferred processed seafood type and the intake rates were determined from a cross-sectional survey among communities in Shah Alam, Selangor (n = 90). The processed seafood were then purchased from local traders (n = 81), underwent homogenization, acid digestion (0.5 g) in Multiwave 3,000 and heavy metal quantitation (Hg, Pb, Cd, As) using ICP-MS. Estimated weekly ingestion (EWI), hazard quotient (HQ), hazard index (HI), lifetime cancer risk (LCR), and target risk (TR) were used to estimate the risk associated with processed seafood consumption.FindingsArsenic was the highest metal detected, acetes topping the list (10.05 ± 0.02 mg/kg). Mercury was detected at significantly higher level in salted fourfinger threadfin (0.88 ± 0.09 mg/kg) while Pb and Cd in toli shad (2.67 ± 0.16 mg/kg; 0.32 ± 0.22 mg/kg). Non-cancer risk was estimated for consumption of dried/salted food types with hazard index (HI) anchoives (5.2) > salted fourfinger threadfin (1.8) > toli shad (1.7). Besides, an unacceptable cancer risk was estimated for all food types for continuous consumption (Total risk (TR) > 10–4), except the dried acetes.Research limitations/implicationsThis study implies that although the concentration of most heavy metals were well below the permitted value, significant amount of risk present for consumption of several species. In addition, for selected heavy metals such as Hg and As, speciation analysis followed by risk assessment would provide a clearer picture.Practical implicationsThere is a need to refer back to the local permissible level of heavy metals in processed seafood and formulate safe consumption guide.Social implicationsThe food types are advised to be consumed with caution especially by the sensitive group.Originality/valueThis study estimated the risk of cancer and other non-cancer disease from processed seafood consumption among Malaysian women.
Urbanization results in the increment of construction waste, which eventually contaminate the surrounding environment and affects the ecosystem. This study aimed to investigate the potential toxic effects of construction waste runoff collected from an illegal construction waste dumping site, Kampung Sungai Pelong, Malaysia by using brine shrimp (Artemia sp.) and zebrafish (Danio rerio). The runoff sample collected in January 2018 proceeded with the physicochemical test, heavy metal analysis and bio-toxicity study. Several physicochemical properties (BOD, TSS, NH3-N and NO3-) and heavy metal content (Cu>Cd>Ni>As>Pb>Cr>Hg) of runoff had values significantly exceeding the respective Class IIA Malaysia National Water Quality Standards. No mortality and abnormal swimming behaviour were observed for brine shrimp acute assay, but severely damage appendages and pigmentation were evident. In the zebrafish sub-acute assay, no constant trend of mortality was observed, but abnormal swimming pattern and alterations in gill tissue (cell vacuolation and clubbed tips). The results signify the potential eco-toxicity caused by construction waste runoff and urge the need for long-term toxicity study and strict legislative actions by the local authority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.