In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which minimizes a weighted squared norm of the residuals in the partial differential equation and a fractional Sobolev norm of the residuals in the boundary conditions and enforce continuity by adding a term which measures the jump in the function and its derivatives at inter-element boundaries, in an appropriate fractional Sobolev norm, to the functional being minimized. Since the second derivatives of the actual solution are not square integrable in a neighborhood of the corners we have to multiply the residuals in the partial differential equation by an appropriate power of r k , where r k measures the distance between the point P and the vertex A k in a sectoral neighborhood of each of these vertices. In each of these sectoral neighborhoods we use a local coordinate system (τ k , θ k ) where τ k = ln r k and (r k , θ k ) are polar coordinates with origin at A k , as first proposed by Kondratiev. We then derive differentiability estimates with respect to these new variables and a stability estimate for the functional we minimize.In [6] we will show that we can use the stability estimate to obtain parallel preconditioners and error estimates for the solution of the minimization problem which are nearly optimal as the condition number of the preconditioned system is polylogarithmic in N, the number of processors and the number of degrees of freedom in each variable on each element. Moreover if the data is analytic then the error is exponentially small in N .
Abstract. In this paper we show that the h-p spectral element method developed in [3,8,9] applies to elliptic problems in curvilinear polygons with mixed Neumann and Dirichlet boundary conditions provided that the Babuska-Brezzi inf-sup conditions are satisfied. We establish basic stability estimates for a non-conforming h-p spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are continuous only at the vertices of the elements. We obtain a stability estimate when the spectral element functions vanish at the vertices of the elements, which is needed for parallelizing the numerical scheme. Finally, we indicate how the mesh refinement strategy and choice of polynomial degree depends on the regularity of the coefficients of the differential operator, smoothness of the sides of the polygon and the regularity of the data to obtain the maximum accuracy achievable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.