Bacterial infections are becoming increasingly difficult to treat due to the development and spread of antibiotic resistance. Therefore, identifying novel antibacterial targets and new antibacterial agents capable of treating infections from drug-resistant bacteria is of vital importance. Structurally simple, yet potent fusaricidin or LI-F class of natural products represents a particularly attractive source of candidates for the development of new antibacterial agents. We have synthesized eighteen fusaricidin/LI-F analogs and investigated the effect of their structure modification on conformation, serum stability, antibacterial activity and human cell toxicity. Our findings show that substitution of an ester bond in depsipeptides with an amide bond may afford equally potent analogs with improved stability and greatly decreased cytotoxicity. Lower overall hydrophobicity/amphiphilicity of amide analogs in comparison to their parent depsipeptides, as indicated by the HPLC retention times, may explain dissociation of antibacterial activity and human cell cytotoxicity. These results indicate that amide analogs may have significant advantages over fusaricidin/LI-F natural products and their depsipeptide analogs as lead structures for the development of new antibacterial agents.
The peptide antibiotic ramoplanin factor A2 is a promising clinical candidate for treatment of Gram-positive bacterial infections that are resistant to antibiotics such as glycopeptides, macrolides, and penicillins. Since its discovery in 1984, no clinical or laboratory-generated resistance to this antibiotic has been reported. The mechanism of action of ramoplanin involves sequestration of peptidoglycan biosynthesis Lipid intermediates, thus physically occluding these substrates from proper utilization by the late-stage peptidoglycan biosynthesis enzymes MurG and the transglycosylases (TGases). Ramoplanin is structurally related to two cell wall active lipodepsipeptide antibiotics, janiemycin, and enduracidin, and is functionally related to members of the lantibiotic class of antimicrobial peptides (mersacidin, actagardine, nisin, and epidermin) and glycopeptide antibiotics (vancomycin and teicoplanin). Peptidomimetic chemotherapeutics derived from the ramoplanin sequence may find future use as antibiotics against vancomycin-resistant Enterococcus faecium (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and related pathogens. Here we review the chemistry and biology of the ramoplanins including its discovery, structure elucidation, biosynthesis, antimicrobial activity, mechanism of action, and total synthesis.
The peptide antibiotic ramoplanin is highly effective against several drug-resistant gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Ramoplanin inhibits bacterial peptidoglycan (PG) biosynthesis by binding to Lipid intermediates I and II at a location different than the N-acyl-D-Ala-D-Ala dipeptide site targeted by vancomycin. Lipid I/II capture physically occludes these substrates from proper utilization by the late-stage PG biosynthesis enzymes MurG and the transglycosylases. Key structural features of ramoplanin responsible for antibiotic activity and PG molecular recognition have been discovered by antibiotic semisynthetic modification in conjunction with NMR analyses. These results help define a minimalist ramoplanin pharmacophore and introduce the possibility of generating ramoplanin-derived peptide or peptidomimetic antibiotics for use against VRE, MRSA, and related pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.