The successful culture of Leptospira spp. from the environment is challenging. Here, we optimized the isolation of Leptospira spp. from water samples spiked with different species and initial concentrations of this organism. The time periods between water sampling and the isolation process were varied (0, 2, and 4 weeks). Bacterial cultures were observed under a microscope, and cultures were graded for cell density, weekly, for 12 weeks. Most pathogenic Leptospira spp. were difficult to culture under all conditions. All conditions of water samples spiked with novel species of Leptospira subclade P1 were culture positive within 2 weeks. For Leptospira subclade P2, storing samples for 2 weeks prior to isolation resulted in more successful isolation compared with isolation after other storage conditions. For subclade S1, all samples with initial bacterial concentrations of more than 103 colonies/mL, under all storage conditions, were successfully cultured. These results suggest that storing contaminated water samples for 2 to 4 weeks in the dark at an ambient temperature prior to culturing can improve the isolation of Leptospira spp. from the samples. We implemented this protocol and collected water samples from natural sources accessed by both humans and animals. Leptospira spp. was identified in 32% (35/109) of water samples. The animal species using a water source influenced the likelihood of water samples being contaminated with Leptospira spp. Cultures of Leptospira spp. from environmental samples can provide useful information for understanding the complex interactions between humans, animals and the environment in the transmission of leptospirosis.
Entomological surveillance for arthropod-borne viruses is vital for monitoring vector-borne diseases and informing vector control programs. In this study, we conducted entomological surveillance in Zika virus endemic areas. In Thailand, it is standard protocol to perform mosquito control within 24 h of a reported dengue case. Aedes females were collected within 72 h of case reports from villages with recent Zika–human cases in Kamphaeng Phet Province, Thailand in 2017 and 2018. Mosquitoes were bisected into head-thorax and abdomen and then screened for Zika (ZIKV) and dengue (DENV) viruses using real-time RT-PCR. ZIKV RNA was detected in three samples from two female Ae. aegypti (1.4%). A partial envelope sequence analysis revealed that the ZIKV sequences were the Asian lineage identical to sequences from ZIKV-infected cases reported in Thailand during 2016 and 2017. Dengue virus-1 (DENV-1) and dengue virus-4 (DENV-4) were found in four Ae. aegypti females (2.8%), and partial capsid sequences were nearly identical with DENV-1 and DENV-4 from Thai human cases reported in 2017. Findings in the current study demonstrate the importance of entomological surveillance programs to public health mosquito-borne disease prevention measures and control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.