Physical rehabilitation after spinal cord injury has been based on the premise that the nervous system is hard-wired and irreparable. Upon this assumption, clinicians have compensated for irremediable sensorimotor deficits using braces, assistive devices, and wheelchairs to achieve upright and seated mobility. Evidence from basic science, however, demonstrates that the central nervous system after injury is malleable and can learn, and this evidence has challenged our current assumptions. The evidence is especially compelling concerning locomotion. The purpose of this perspective article is to summarize the evidence supporting an impending paradigm shift from compensation for deficits to rehabilitation as an agent for walking recovery. A physiologically based approach for the rehabilitation of walking has developed, translating evidence for activity-dependent neuroplasticity after spinal cord injury and the neurobiological control of walking. Advanced by partnerships among neuroscientists, clinicians, and researchers, critical rehabilitation concepts are emerging for activity-based therapy to improve walking recovery, with promising clinical findings.
Background and Purpose. The use of locomotor training with a body-weight–support systemand treadmill (BWST) and manual assistance has increased in rehabilitation. The purpose of this case report isto describe the process for retraining walking in a person with an incomplete spinal cord injury (SCI) using the BWST and transferring skills from the BWST to overground assessment and community ambulation. Case Description. Following discharge from rehabilitation, a man with an incomplete SCI at C5–6 and an American Spinal Injury Association (ASIA) Impairment Scale classification of D participated in 45sessions of locomotor training. Outcomes. Walking speed and independence improved from 0.19 m/s as a home ambulator using a rolling walker and a right ankle-foot orthosis to 1.01 m/s as a full-time ambulator using a cane only for communitymobility. Walking activity (X̄±SD) per 24 hours increased from 1,054±543 steps to 3,924±1,629 steps. Discussion. In a person with an incomplete SCI, walking ability improved after locomotor trainingthat used a decision-making algorithm and progression across training environments.
A simple, context-dependent stepping pattern sufficient for community ambulation was recovered in the absence of substantial voluntary isolated lower-extremity movement in a child with chronic, severe SCI. These novel data suggest that some children with severe, incomplete SCI may recover community ambulation after undergoing LT and that the LEMS cannot identify this subpopulation.
Background and Purpose: Gait deviations in individuals after incomplete spinal cord injury (ISCI) that are quantified using spatiotemporal (ST) parameters are often targeted during therapeutic interventions. The purpose of our study was to establish reliability and responsiveness of ST parameters of gait after ISCI using an instrumented walkway (GaitMat II). Methods: Sixteen individuals with ISCI participated in the study. Each subject completed at least 2 walking trials at self-selected (SS) walking speed. Intraclass correlation coefficients model 2, 1 (ICC2,1) with 95% confidence intervals (CIs), standard error of measurement (SEM), SEM percent change (SEM%), the minimal detectable change (MDC), and the MDC percent change (MDC%) were determined for 8 ST parameters including step length, single limb support, and double limb support time for the more and less impaired limb, cadence, and speed. Results: Excellent test-retest agreement (0.84-0.99) was observed in all ST parameters. SEM% ranged from 8% to 29%, while MDC% ranged from 21% (cadence) to 80% (double limb support time). MDC% values were relatively higher (5-12 MDC%) for the more versus less impaired limb. Discussion: SEM% results indicate that small to moderate changes were needed to indicate a real change in walking performance. Differences in MDC% values between limbs indicated that variability in parameters might be sensitive to level of motor impairment. Conclusion: In individuals with ISCI, different gait, balance, or strength training programs can be compared and contrasted based on a quantifiable and meaningful change in the ST parameter of interest.
Objective: To examine position-dependent (semireclined to standing) and walking speed-dependent soleus H-reflex modulation after motor incomplete spinal cord injury (SCI). Participants: Twenty-six patients with motor incomplete SCI (mean: 45 ± 15 years) and 16 noninjured people (mean: 38 ± 14 years). Methods: Soleus H-reflexes were evoked by tibial nerve stimulation. Patients were tested in semireclined and standing positions (experiment 1) and in midstance and midswing positions (experiment 2).Results: H-reflexes were significantly greater after SCI in all positions compared with noninjured people (P , 0.05). Position-dependent modulation from semireclined to standing (normally observed in noninjured people) was absent after SCI. In SCI patients, H-reflex modulation was not significantly different at 1.2 m/s compared with 0.6 m/s treadmill walking speed; in noninjured people, H-reflex modulation was significantly greater at 1.2 m/s compared with 0.6 m/s treadmill walking speed. There was a significant positive correlation between modified Ashworth scores, a clinical measure of spasticity and soleus H-reflex amplitudes tested in all positions. A significant negative correlation was also found between H-reflexes in standing and midstance positions and the amount of assistance patients required to walk. Conclusions: An improvement in position-dependent and walking speed-dependent reflex modulation after SCI may indicate functional recovery. Future studies will use H-reflex testing to track changes as a result of therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.