Background: In preclinical studies, cell transplantation into the brain has shown great promise for the treatment of a wide range of neurological diseases. However, the use of a straight cannula and syringe for cell delivery to the human brain does not approximate cell distribution achieved in animal studies. This technical deficiency may limit the successful clinical translation of cell transplantation. Objective: To develop a stereotactic device that effectively distributes viable cells to the human brain. Our primary aims were to (1) minimize the number of transcortical penetrations required for transplantation, (2) reduce variability in cell dosing and (3) increase cell survival. Methods: We developed a modular cannula system capable of radially branched deployment (RBD) of a cell delivery catheter at variable angles from the longitudinal device axis. We also developed an integrated catheter-plunger system, eliminating the need for a separate syringe delivery mechanism. The RBD prototype was evaluated in vitro and in vivo with subcortical injections into the swine brain. Performance was compared to a 20G straight cannula with dual side ports, a device used in current clinical trials. Results: RBD enabled therapeutic delivery in a precise ‘tree-like’ pattern branched from a single initial trajectory, thereby facilitating delivery to a volumetrically large target region. RBD could transplant materials in a radial pattern up to 2.0 cm from the initial penetration tract. The novel integrated catheter-plunger system facilitated manual delivery of small and precise volumes of injection (1.36 ± 0.13 µl per cm of plunger travel). Both dilute and highly concentrated neural precursor cell populations tolerated transit through the device with high viability and unaffected developmental potential. While reflux of infusate along the penetration tract was problematic with the use of the 20G cannula, RBD was resistant to this source of cell dose variability in agarose. RBD enabled radial injections to the swine brain when used with a modern clinical stereotactic system. Conclusions: By increasing the total delivery volume through a single transcortical penetration in agarose models, RBD strategy may provide a new approach for cell transplantation to the human brain. Incorporation of RBD or selected aspects of its design into future clinical trials may increase the likelihood of successful translation of cell-based therapy to the human patient.
Thirty two cases of endophthalmitis following extracapsular cataract surgery that had occurred within our department and had undergone intraocular diagnostic tap between
Intracerebral cell transplantation is being pursued as a treatment for many neurological diseases, and effective cell delivery is critical for clinical success. To facilitate intracerebral cell transplantation at the scale and complexity of the human brain, we developed a platform technology that enables radially branched deployment (RBD) of cells to multiple target locations at variable radial distances and depths along the initial brain penetration tract with real-time interventional magnetic resonance image (iMRI) guidance. iMRI-guided RBD functioned as an "add-on" to standard neurosurgical and imaging workflows, and procedures were performed in a commonly available clinical MRI scanner. Multiple deposits of super paramagnetic iron oxide beads were safely delivered to the striatum of live swine, and distribution to the entire putamen was achieved via a single cannula insertion in human cadaveric heads. Human embryonic stem cell-derived dopaminergic neurons were biocompatible with the iMRI-guided RBD platform and successfully delivered with iMRI guidance into the swine striatum. Thus, iMRI-guided RBD overcomes some of the technical limitations inherent to the use of straight cannulas and standard stereotactic targeting. This platform technology could have a major impact on the clinical translation of a wide range of cell therapeutics for the treatment of many neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.