It is proposed that both groups of child patients be encouraged to seek early dental advice and be incorporated in a meticulous prevention programme.
BackgroundThe accurate detection of approximal caries is generally difficult. The aim of this study was to assess the ability of the pen-type laser fluorescence device (LF pen) to detect approximal carious lesions in comparison to bitewing radiographs (BW).MethodsThree hundred forty-one tooth surfaces were diagnosed in 20 patients with an average age of 26.70 (±2.82) years. Each test tooth was sequentially assessed by a single calibrated examiner using visual inspection, BW, and the LF pen. Radiographs were used as the gold standard to calculate an appropriate cut-off.ResultsSensitivity, specificity and accuracy values for cut-off limits of 15, measured by the LF pen were compared using the chi2 test (McNemar test). For approximal caries at D3 level, the highest values of specificity and sensitivity were observed for the LF pen at a cut-off value of 15 (96.8 and 83.0 %) and for visual inspection (99.3 and 4.3 %).ConclusionWithin the limitations of this study, dentin caries on approximal surfaces could be detected equally well by the LF pen as by the bitewing radiographs. Therefore, the LF pen can be recommended as an alternative to radiographs for the detection of approximal caries in a regular dental practice setting.Trial registration DRKS00004817 on DRKS on 12th March 2013.
Objective The purpose of this randomized, cross-over, in situ study was to determine the remineralization of demineralized dentin specimens after the application of a 10% fluoride (F-) or a 1% chlorhexidine–1% thymol (CHX–thymol) varnish.Material and Methods Twelve individuals without current caries activity wore removable appliances in the lower jaw for a period of four weeks. Each appliance contained four human demineralized dentin specimens fixed on the buccal aspects. The dentin specimens were obtained from the cervical regions of extracted human third molars. After demineralization, half the surface of each specimen was covered with a nail varnish to serve as the reference surface. The dentin specimens were randomly assigned to one of the three groups: F-, CHX–thymol, and control (no treatment). Before the first treatment period and between the others, there were washout periods of one week. After each treatment phase, the changes in mineral content (vol% µm) and the lesion depths (µm) of the dentin slabs were determined by transverse microradiography (TMR). Data analysis was accomplished by the Kruskal-Wallis test and the Mann-Whitney U test (p<0.05).Results The medians (25th/75th percentile) of integrated mineral loss were 312.70 (203.0-628.7) for chlorhexidine varnish, 309.5 (109.8-665.8) for fluoride varnish, and -346.9 (-128.7 - -596.0) for the control group. The medians (25th/75th percentile) of lesion depth were 13.6 (5.7-34.5) for chlorhexidine varnish, 16.5 (5.6-38.1) for fluoride varnish, and -14.2 (-4.5- -32.9) for the control group. Use of the 10% F- or 1% CHX–1% thymol varnishes resulted in significantly decreased mineral loss and lesion depth in dentin when compared with the control group. There were no statistically significant differences among the test groups.Conclusions Within the limitations of this study, the results suggest that the effect of the treatment of demineralized dentin with 10% F- or 1% CHX–1% thymol is better than without any treatment.
The aim of this in-vitro study is to compare the prophylaxis powder Airflow® Plus to a conventional prophylaxis paste with regards to surface abrasion and roughness on four different restorative materials. A total of 80 samples were fabricated, including 20 of each investigated material. Among those were a nanocomposite (Ceram X Spectra™ ST, Dentsply), a glass ionomer cement (Ketac Fill™, 3M™), a cast metal alloy (Bio Maingold SG®, Heraeus Kulzer) and a ceramic (HeraCeram® Saphir, Heraeus Kulzer). Of each material, all samples were equally divided into two groups. Samples in one group were treated with AirFlow® Plus using the AirFlow® Prophylaxis Master (EMS, Switzerland) (Group AF) and the ones in the other group with Prophy Paste (Cleanic™, Kerr, Austria) (Group CL) on a rubber cup. Applied force amounted to 1.5 N at 2000 rpm. Under controlled reproduceable conditions, a 10-year interval with 4 application per year, a total of 200 seconds, was simulated. Size of each sample amounted to 6 mm in diameter and 2 mm in height. Half side of each sample were treated. While comparing the treated and untreated area of each sample, surface abrasion and roughness were measured using an optical 3D system. Roughness was measured based on the arithmetic roughness average of the surface (Ra) and root mean square of the surface roughness (Rq). The statistical evaluation of the data was carried out using the non-parametric Mann-Whitney-U-test, Wilcoxon-test and the Kruskal-Wallis test for group comparisons. In conclusion, the use of the rubber cup with Prophy Paste caused a significantly higher abrasion on composite, ceramic and gold compared to the AirFlow® Plus powder (p < 0.05). In group AF, the significant highest values for Ra were determined on GIC, followed by composite, gold and then ceramic in intragroup comparison. Ra on GIC was significantly higher in group AF (p < 0.05).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.