The acoustic impedance of the subglacial material beneath 7.2 km profiles on four ice streams in Antarctica has been measured using a seismic technique. The ice streams span a wide range of dynamic conditions with flow rates of 35–464 m a–1. The acoustic impedance indicates that poorly lithified or dilated sedimentary material is ubiquitous beneath these ice streams. Meanacoustic impedance across each profile correlates well with basal shear stress and the slipperiness of the bed, indicating that acoustic impedance is a good diagnostic not only for the porosity of the subglacial material, but also for its dynamic state (deforming or non-deforming). Beneath two of the ice streams, lodged (non-deforming) and dilated (deforming) sediment coexist but their distribution is not obviously controlled by basal topography or ice thickness. Their distribution may be controlled by complex material properties or the deformation history. Beneath Rutford Ice Stream, lodged and dilated sediment coexist and are distributed in broad bands several kilometres wide, whileon Talutis Inlet there is considerable variability over much shorter distances; this may reflect differences in the mechanism of drainage beneath the ice streams. The material beneath the slow-moving Carlson Inlet is probably lodged but unlithified sediment; this is consistent with the hypothesis that Carlson Inlet was once a fast-flowing ice stream but is now in a stagnant phase, which could possibly be revivedby raised basal water content. The entire bed beneath fast-flowing Evans Ice Stream is dilated sediment.
The view from the south is, more than ever, dominated by ominous signs of change. Antarctica and the Southern Ocean are intrinsic to the Earth system, and their evolution is intertwined with and influences the course of the Anthropocene. In turn, changes in the Antarctic affect and presage humanity's future. Growing understanding is countering popular beliefs that Antarctica is pristine, stable, isolated, and reliably frozen. An aspirational roadmap for Antarctic science has facilitated research since 2014. A renewed commitment to gathering further knowledge will quicken the pace of understanding of Earth systems and beyond. Progress is already evident, such as addressing uncertainties in the causes and pace of ice loss and global sea-level rise. However, much remains to be learned. As an iconic global ''commons,'' the rapidity of Antarctic change will provoke further political action. Antarctic research is more vital than ever to a sustainable future for this One Earth.
[1] Crevasses form in response to tensile stresses in glaciers and ice sheets. It has been widely assumed that crevasses initiate at, or near, the surface of the ice, from starter cracks up to a few centimeters long. If the tensile stress is sufficient, these cracks propagate downward into the ice to form a crevasse, until the weight-induced lithostatic stress prevents them penetrating deeper. We present ground-penetrating radar data acquired on the Rutford Ice Stream, Antarctica, which indicate that crevasses occur at depths of several meters beneath the ice surface and were formed in areas where surface crevassing is absent. The data support the hypothesis that these are examples of subsurface crevasse formation. Using linear elastic fracture mechanics (LEFM), we investigate the feasibility of crevasse initiation at depth. We consider the initiation of an isolated crevasse from a subsurface crack, subject to a ''dynamic tensile stress'' which results from deformation associated with ice movement and a weight-induced lithostatic stress. The LEFM approach allows us to estimate a init , the minimum length a crack must be before crack propagation will occur. In earlier models of crevasse formation, it was assumed that the dynamic tensile stress is constant with depth. We consider a more realistic scenario, where the dynamic tensile stress varies with depth, in such a way that the tensile strain rate remains constant. We show that in this scenario, crevasse initiation from centimeter-scale starter cracks is feasible at depths of 10-30 m, as well as at the surface. At present, the formulation of a reliable predictive model is limited by an incomplete knowledge of the mechanical properties of firn. In previous studies, the depth of buried crevasses has been used to estimate the time elapsed since ice was exposed to higher stresses and different flow regimes. In the light of the results presented here, those estimates may need to be reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.