Toll-like receptors (TLRs) constitute a multi-gene family, which plays a pivotal role in sensing invading pathogens by virtue of conserved microbial patterns. TLR repertoire of chicken and zebra finch has been well studied. However TLR family of other avian species is yet to be characterized. In the present study, we identified TLR repertoire of turkey, characterized avian specific receptor TLR15 in turkey and profiled the TLRs expressions in a range of tissues of turkey poults. All ten TLR genes orthologous to chicken TLR repertoire were found in turkey. Turkey TLR genes showed 81-93 % similarity at amino acid level to their chicken counter parts. Phylogenetic analysis confirmed the orthologous relationship of turkey TLRs with chicken and zebra finch TLRs. Open reading frame of turkey TLR15 was 2,607 bp long encoding 868 amino acids similar to that of broiler chicken and showed 92.4, 91.1 and 69.5 % identity at amino acid levels with chicken, Japanese quail and zebra finch TLR15 sequences respectively. Overall TLR expression was highest for TLR4 and lowest for TLR21. TLR1A, 2A, 2B and 21 were significantly higher in liver than other tissues investigated (P < 0.01). TLR3 expression was significantly higher in bone marrow (BM) and spleen in comparison to other tissues studied (P < 0.01). Furthermore, no significant differences in the expression levels of TLR1B, 4, 5, 7 and 15 genes were detected among the tissues studied. Our findings contribute to the characterization of innate immune system of birds and show the innate preparedness of young turkey poults to a range of pathogens.
The hybrid congener 3 derived from hydroxychalcone and pharmacophore oxypropanolamine for adrenergic receptor, along with its enantiomers 9a and 9b were selected from a series of compounds for detailed studies of their antidiabetic profile in sucrose-challenged, low-dosed, streptozotocin-induced diabetic rats and in db/db mice, and antidyslipidaemic profile in high fat diet-induced dyslipidaemic hamsters. The test compounds exhibited significant and consistent antidiabetic and antidyslipidaemic activities in the above models. The pharmacodynamic studies of two metabolites, 10 and 11, were undertaken. Metabolite 10 having greater bioavailability in plasma was synthesized and found to exhibit significant antidiabetic activity. The parent compound together with its active metabolites exhibited significant oral bioavailability, thus establishing compound 3 as a potential lead molecule for further studies.
<b><i>Introduction:</i></b> The present study deals with the synthesis of pregnane-oximino-amino-alkyl-ethers and their evaluation for antidiabetic and anti-dyslipidemic activities in validated animal and cell culture models. <b><i>Methods:</i></b> The effect on glucose tolerance was measured in sucrose-loaded rats; antidiabetic activity was evaluated in streptozotocin (STZ)-induced diabetic rats and genetically diabetic <i>db</i>/<i>db</i> mice; the anti-dyslipidemic effect was characterized in high-fructose, high-fat diet (HFD)-fed dyslipidemic hamsters. The effect on glucose production and glucose utilization was analyzed in HepG2 liver and L6 skeletal muscle cells, respectively. <b><i>Results:</i></b> From the synthesized molecules, pregnane-oximino-amino-alkyl-ether (compound <b>14b)</b> improved glucose clearance in sucrose-loaded rats and exerted antihyperglycemic activity on STZ-induced diabetic rats. Further evaluation in genetically diabetic <i>db</i>/<i>db</i> mice showed temporal decrease in blood glucose, and improvement in glucose tolerance and lipid parameters, associated with mild improvement in the serum insulin level. Moreover, compound <b>14b</b> treatment displayed an anti-dyslipidemic effect characterized by significant improvement in altered lipid parameters of the high-fructose, HFD-fed dyslipidemic hamster model. In vitro analysis in the cellular system suggested that compound <b>14b</b> decreased glucose production in liver cells and stimulated glucose utilization in skeletal muscle cells. These beneficial effects of compound <b>14b</b> were associated with the activation of the G-protein-coupled bile acid receptor TGR5. <b><i>Conclusion:</i></b> Compound <b>14b</b> exhibits antidiabetic and anti-dyslipidemic activities through activating the TGR5 receptor system and can be developed as a lead for the management of type II diabetes and related metabolic complications.
Virosome based vaccines against Newcastle disease (ND) were prepared and evaluated for their immunogenicity and protective efficacy in chickens. Envelop of Newcastle disease virus (NDV) was solubilised with Triton X-100 to yield virosomes which were later on encapsulated in poly-lactide-co-glycolide (PLG) microspheres. The birds were immunized intranasally with virosomes or PLG microspheres encapsulated virosomes, and efficacy of these preparations was compared with commercial LaSota vaccine. The preparations protected the chickens against virulent virus challenge infection, however the microencapsulated virosome vaccine gave slightly lesser degree of protection than non encapsulated counterpart. The humoral and cell mediated immune response generated as well as the protection afforded by virosome preparations were found to be comparable with LaSota vaccine. The results substantiate the potential of virosome based vaccines to provide high level of immunity and protection against Newcastle disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.