Leptin is a 16-kD protein encoded by the ob/ob (obesity) gene. In rodents it plays a role in obesity, diabetes, fertility, and neuroendocrine function. In humans serum concentrations of leptin correlate with total body fat in both adults and children. We measured cord blood leptin in 186 neonates that included 82 appropriate for gestational age (AGA), 47 large for gestational age (LGA), 20 infants of diabetic mothers, 52 preterm infants, and 15 intrauterine growth-retarded (IUGR) infants. There were 16 pairs of twins. The mothers of 17 preterm infants were treated with steroids before delivery. Leptin (mean +/- SD) concentration in term, AGA infants (39.4 +/- 1.1 wk) with birth weight (BW) of 3.2 +/- 0.3 kg, body mass index (BMI) of 12.6 +/- 1.1 was 4.01 +/- 3.5 ng/mL. BW correlated with cord leptin (p = 0.002) in a multivariate analysis controlling for potential confounders. Both LGA infants and infants of diabetic mothers had higher cord leptin concentration 7.3 +/- 3.8 and 6.1 +/- 4.8 ng/mL, respectively, compared with AGA infants (p < 0.05). Preterm infants had a mean leptin level of 1.8 +/- 0.97 ng/mL and a 3-fold elevation was seen if mothers received steroids antenatally (p = 0.006). IUGR infants had increased leptin (6.5 +/- 3.9 ng/mL, p = 0.03). Concerning the twin pairs, the smaller had a higher leptin level compared with larger twin (4.1 +/- 9.51 versus 2.8 +/- 5.14, p = NS). Neonatal cord leptin concentrations correlate well with BW and BMI. No gender differences were found in cord blood leptin. Maternal obesity had no effect on cord leptin, whereas exogenous maternal steroids increased neonatal leptin concentrations.
Glucose, like oxygen, is of fundamental importance for any living being and it is the major energy source for the fetus and the neonate during gestation. The placenta ensures a steady supply of glucose to the fetus, while birth marks a sudden change in substrate delivery and a major change in metabolism. Hypoglycemia is one of the most common pathologies encountered in the neonatal intensive care unit and affects a wide range of neonates. Preterm, small for gestational age (GA) and intra-uterine growth restricted neonates are especially vulnerable due to their lack of metabolic reserves and associated co-morbidities. Nearly 30-60% of these high-risk infants are hypoglycemic and require immediate intervention. Preterm neonates are uniquely predisposed to developing hypoglycemia and its associated complications due to their limited glycogen and fat stores, inability to generate new glucose using gluconeogenesis pathways, have higher metabolic demands due to a relatively larger brain size, and are unable to mount a counter-regulatory response to hypoglycemia. In this review we will discuss the epidemiology; pathophysiology; clinical presentation; management and neurodevelopmental outcomes in affected infants and summarize evidence to develop a rational and scientific approach to this common problem.
Carnitine is essential for transport of long-chain fatty acids into mitochondria for their subsequent β-oxidation, but its role in the gastrointestinal tract has not been well described. Recently several genetic epidemiologic studies have shown strong association between mutations in carnitine transporter genes OCTN1 and OCTN2 and a propensity to develop Crohn's disease. This study aims to investigate role of carnitine and β-oxidation in the GI tract. We have studied the gastrointestinal tract effects of carnitine deficiency in a mouse model with loss-of-function mutation in the OCTN2 carnitine transporter. juvenile visceral steatosis (OCTN2 -/-) mouse spontaneously develops intestinal villous atrophy, breakdown and inflammation with intense lymphocytic and macrophage infiltration, leading to ulcer formation and gut perforation. There is increased apoptosis of jvs (OCTN2 -/-) gut epithelial cells. We observed an up-regulation of heat shock factor-1 (HSF-1) and several heat shock proteins (HSPs) which are known to regulate OCTN2 gene expression. Intestinal and colonic epithelial cells in wild type mice showed high expression and activity of the enzymes of β-oxidation pathway. These studies provide evidence of an obligatory role for carnitine in the maintenance of normal intestinal and colonic structure and morphology. Fatty acid oxidation, a metabolic pathway regulated by carnitine-dependent entry of long-chain fatty acids into mitochondrial matrix, is likely essential for normal gut function. Our studies suggest that carnitine supplementation, as a means of boosting fatty acid oxidation, may be therapeutically beneficial in patients with inflammation of the intestinal tract.
Mitochondrial fatty acid oxidation disorders (FAOD) are recessively inherited errors of metabolism. Newborns with FAOD typically present with hypoketotic hypoglycemia, metabolic acidosis, hepatic failure, and cardiomyopathy. Late presentations include episodic myopathy, neuropathy, retinopathy, and arrhythmias. Sudden unexpected death can occur at any age and can be confused with sudden infant death syndrome. Some FAOD are associated with intrauterine growth restriction, prematurity, and pregnancy complications in the heterozygous mother, such as severe preeclampsia, acute fatty liver of pregnancy (AFLP), or hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. Maternal pregnancy complications occur primarily in mothers carrying a fetus with long-chain L-3-hydroxyacyl CoA dehydrogenase deficiency or general trifunctional protein deficiencies. FAOD as a group represent the most common inborn errors of metabolism, and presymptomatic diagnosis of FAOD is the key to reduce morbidity and avoid mortality. The application of tandem mass spectrometry to newborn screening provides an effective means to identify most FAOD patients presymptomatically. At the beginning of 2005, 36 state newborn screening programs have mandated or adopted this technology resulting in a marked increase in the number of asymptomatic neonates with FAOD diagnosed. To ensure the long-term benefits of such screening programs, pediatricians and other health care providers must be educated about these disorders and their treatment. Fatty acids constitute the largest energy reserve in the body and play a crucial role in supplying energy-yielding substrates during periods of fasting and stress through the -oxidation pathway (1). FAO provides nearly 80% of energy to organs like heart, liver, and skeletal muscles, especially during fasting when tissue glycogen stores become depleted. The -oxidation pathway also generates ketone bodies, which are used by peripheral tissues and brain (2). This metabolic pathway is critical for the neonate who has limited glycogen reserve and a high metabolic rate leading to rapid metabolic decompensation if there is any perturbation of individual enzymes (3). FAOD are potentially fatal autosomal recessive disorders and are now diagnosed frequently in the perinatal and infantile periods. Mothers heterozygous for a FAOD and pregnant with an affected fetus may develop severe preeclampsia, AFLP, and the HELLP syndrome, and may deliver a premature, intrauterine growth-restricted (IUGR) infant (4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.