This paper analyses the performance of filter bank multicarrier (FBMC) signaling in conjunction with offset quadrature amplitude modulation (OQAM) in multi-user (MU) massive multiple-input multiple-output (MIMO) systems. Initially, closed form expressions are derived for tight lower bounds corresponding to the achievable uplink sum-rates for FBMC-based single-cell MU massive MIMO systems relying on maximum ratio combining (MRC), zero forcing (ZF) and minimum mean square error (MMSE) receiver processing with/without perfect channel state information (CSI) at the base station (BS). This is achieved by exploiting the statistical properties of the intrinsic interference that is characteristic of FBMC systems. Analytical results are also developed for power scaling in the uplink of MU massive MIMO-FBMC systems. The above analysis of the achievable sum-rates and corresponding power scaling laws is subsequently extended to multi-cell scenarios considering both perfect as well as imperfect CSI, and the effect of pilot contamination. The delay-spread-induced performance erosion imposed on the linear processing aided BS receiver is numerically quantified by simulations. Numerical results are presented to demonstrate the close match between our analysis and simulations, and to illustrate and compare the performance of FBMC and traditional orthogonal frequency division multiplexing (OFDM)-based MU massive MIMO systems.
We look for manifestations of the effects of torsion in the low-energy limit in the context of Einstein - Cartan - Dirac theory (or any theory of gravity in which the torsion tensor is purely axial). To proceed, we introduce the mathematical law governing the transport of orthonormal bases or tetrads in a spacetime with torsion. This law is applied to compute the metric and connection in a rotating and accelerating frame, or laboratory. A spin- particle is placed in this rotating and accelerating frame and the low-energy limit of the Dirac equation is taken by means of the Foldy - Wouthuysen transformation. In addition to obtaining the Bonse - Wroblewski phase shift due to acceleration, Sagnac-type effects, rotation - spin couplings of the Mashhoon type, redshift of the kinetic energy and the spin - orbit coupling term of Hehl and Ni, we also obtain several interesting and significant terms as a consequence of introducing torsion into spacetime. We give a detailed interpretation of these additional terms and discuss their observability in the light of current well-known experimental techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.