A sensitive assay was used to measure the binding of iodine-125-labeled insulin in serum obtained from 112 newly diagnosed insulin-dependent diabetics before insulin treatment was initiated. Two groups of nondiabetics served as controls: children with a variety of diseases other than diabetes and nondiabetic siblings of insulin-dependent diabetics. Eighteen of the diabetics were found to have elevated binding and 36 were above the 95th percentile of control values. The insulin-binding protein is precipitated by antibody to human immunoglobulin G, has a displacement curve that is parallel and over the same concentration range as serum from long-standing insulin-dependent diabetics, and elutes from a Sephacryl S-300 column at the position of gamma globulin. These insulin antibodies are present in a large percentage of newly diagnosed, untreated diabetics and may be an immune marker of B-cell damage.
During the preclinical period of human insulin-dependent diabetes, both impaired pancreatic beta-cell function and increased insulin resistance are found, although normoglycemia is preserved. To better understand the changes in beta-cell function and insulin sensitivity that occur in preclinical insulin-dependent diabetes, we performed a panel of in vivo beta-cell function tests and measured insulin sensitivity in adolescent male baboons both in normal health and after a small dose of streptozocin which did not induce hyperglycemia. Nine animals were studied before (stage 1) and 1 week after receiving a low dose of streptozocin (stage 2). There was no change in fasting plasma glucose or insulin. The mean glucose disposal rate (Kg) remained within the normal range, but dropped from 2.0 +/- 0.2% +/- SE) to 1.2 +/- 0.1%/min (P less than 0.01), the acute insulin response to arginine (AIR(arg)) fell from 67.7 +/- 19.4 microU/mL (485.8 +/- 139.2 pmol/L) to 32.8 +/- 7.2 microU/mL (235.3 +/- 51.7 pmol/L; P less than 0.05), and the acute insulin response to glucose (AIR(gluc)) fell from 881 +/- 243 microU/mL.10 min (6321 +/- 1744 pmol/L.10 min) to 334 +/- 82 microU/mL.10 min (2396 +/- 588 pmol/L.10 min; P less than 0.01). The most dramatic change, however, was in the ability of hyperglycemia to potentiate AIR(arg) (expressed as the slope of potentiation). This was reduced by 94% from 1.8 +/- 0.5 to 0.1 +/- 0.1 (P less than 0.01), with almost no overlap in values between stages 1 and 2. Insulin sensitivity was also lower 1 week after streptozocin treatment. When the animals were restudied 8 weeks after streptozocin treatment (stage 3) most measures of beta-cell function were not significantly different from those in stage 1. The fasting plasma glucose level was 85.4 +/- 4.3 mg/dL (4.7 +/- 0.2 mmol/L), Kg was 1.8 +/- 0.3%/min, fasting plasma insulin was 35.9 +/- 8.5 microU/mL (257.6 +/- 61.0 pmol/L), AIR(arg) was 67.0 +/- 15.4 microU/mL (480.7 +/- 110.5 pmol/L), and AIR(gluc) was 615.3 +/- 265.3 microU/mL.10 min (4413 +/- 1901 pmol/L.10 min), and tissue insulin sensitivity was 2.7 +/- 0.4 x 10(4) min/microU.mL. These values show extensive overlap with those of stage 1, from which they are not significantly different. The slope of glucose potentiation, however, remained low in all animals at stage 3.(ABSTRACT TRUNCATED AT 400 WORDS)
Insulin secretion and insulin sensitivity were compared in 12 HLA-identical siblings of insulin-dependent diabetics and nondiabetic controls. Only the maximum acute insulin response to intravenous arginine was lower in the siblings than in the matched controls (P less than .05); other measures of insulin secretion, including the acute insulin response to glucose or arginine, the second-phase insulin response to glucose, and the slope of glucose potentiation, were not significantly different. Insulin sensitivity, derived from an intravenous glucose tolerance test with a minimal-modeling technique, was lower in the siblings (P less than .01). In a large group of nondiabetic controls of various adiposity, insulin secretion and insulin sensitivity were inversely related. In view of the difference in insulin sensitivity between siblings and matched controls, a direct comparison of beta-cell function tests may be inappropriate, and the measures of insulin secretion were compared with those of nondiabetics when adjusted for differences in insulin sensitivity. This analysis revealed that all measures of insulin secretion were significantly lower in the siblings. We conclude that HLA-identical siblings of insulin-dependent diabetics show evidence of both insulin resistance and impaired beta-cell function and that analysis of beta-cell function in relation to insulin sensitivity shows a greater frequency of beta-cell secretory abnormalities than previously appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.